Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping MM Cavalcanti, VN Domingos Cavalcanti, FA Falcão Nascimento, ... Zeitschrift für angewandte Mathematik und Physik 65 (6), 1189-1206, 2014 | 77 | 2014 |
Decay rates for Bresse system with arbitrary nonlinear localized damping W Charles, JA Soriano, FAF Nascimento, JH Rodrigues Journal of Differential Equations 255 (8), 2267-2290, 2013 | 48 | 2013 |
Moore–Gibson–Thompson equation with memory in a history framework: a semigroup approach MDO Alves, AH Caixeta, MA Jorge Silva, JH Rodrigues Zeitschrift für angewandte Mathematik und Physik 69, 1-19, 2018 | 41 | 2018 |
Global well-posedness and exponential decay rates for a KdV–Burgers equation with indefinite damping MM Cavalcanti, VND Cavalcanti, V Komornik, JH Rodrigues Annales de l'Institut Henri Poincare (C) Non Linear Analysis 31 (5), 1079-1100, 2014 | 38 | 2014 |
On modeling and uniform stability of a partially dissipative viscoelastic Timoshenko system MO Alves, EH Gomes Tavares, MA Jorge Silva, JH Rodrigues SIAM Journal on Mathematical Analysis 51 (6), 4520-4543, 2019 | 29 | 2019 |
On a Timoshenko system with thermal coupling on both the bending moment and the shear force MO Alves, AH Caixeta, MA Jorge Silva, JH Rodrigues, DS Almeida Júnior Journal of Evolution Equations 20, 295-320, 2020 | 19 | 2020 |
Decay rates for Timoshenko system with nonlinear arbitrary localized damping ML Santos, DSA Júnior, JH Rodrigues, FAF Nascimento Differential Integral Equations 27 (1-2), 1-26, 2014 | 11 | 2014 |
Boundary stabilization of the linear MGT equation with partially absorbing boundary data and degenerate viscoelasticity M Bongarti, I Lasiecka, JH Rodrigues arXiv preprint arXiv:2107.09978, 2021 | 8 | 2021 |
Weak and strong semigroups in structural acoustic Kirchhoff-Boussinesq interactions with boundary feedback I Lasiecka, JH Rodrigues Journal of Differential Equations 298, 387-429, 2021 | 7 | 2021 |
A finite element method for a seawater intrusion problem in unconfined aquifers A Abudawia, A Mourad, JH Rodrigues, C Rosier Applied Numerical Mathematics 127, 349-369, 2018 | 7 | 2018 |
General decay rates for the wave equation with mixed-type damping mechanisms on unbounded domain with finite measure FR Dias Silva, FAF Nascimento, JH Rodrigues Zeitschrift für angewandte Mathematik und Physik 66, 3123-3145, 2015 | 5 | 2015 |
Existence of global attractors for a semilinear wave equation with nonlinear boundary dissipation and nonlinear interior and boundary sources with critical exponents JH Rodrigues, M Roy Applied Mathematics & Optimization 86 (3), 35, 2022 | 2 | 2022 |
Numerical analysis for the wave equation with locally nonlinear distributed damping VND Cavalcanti, JH Rodrigues, C Rosier Journal of Computational and Applied Mathematics 301, 144-160, 2016 | 1 | 2016 |
Decay rates for Timoshenko system with nonlinear arbitrary localized damping DS Almeida Júnior, FA Falcão Nascimento, JH Rodrigues, ML Santos | 1 | 2014 |
On weak/Strong Attractor for a 3-D Structural-Acoustic Interaction with Kirchhoff–Boussinesq Elastic Wall Subject to Restricted Boundary Dissipation I Lasiecka, JH Rodrigues Journal of Dynamics and Differential Equations, 1-33, 2023 | | 2023 |
Optimal boundary feedback control of high intensity focused ultrasound processes M Bongarti, I Lasiecka, JH Rodrigues 2021 60th IEEE Conference on Decision and Control (CDC), 3318-3323, 2021 | | 2021 |
Stabilization of a nonlinear structural acoustic interaction I Lasiecka, JH Rodrigues 2021 American Control Conference (ACC), 2794-2799, 2021 | | 2021 |
Equaçao de KdV-Burgers com Damping Indefinido e Análise Numérica de uma Equaçao de Onda com Dissipaçao Nao Linear JH Rodrigues | | 2014 |
Controle exato para a equação de onda: o método HUM JH Rodrigues Universidade Estadual Paulista (Unesp), 2010 | | 2010 |
On weak/strong attractor for a 3-D Structural Acoustic Interaction with Kirchhoff-Boussinesq Interface. I Lasiecka, J Rodrigues 2022 Fall Southeastern Sectional Meeting, 0 | | |