关注
Liangliang Shang
Liangliang Shang
在 ntu.edu.cn 的电子邮件经过验证
标题
引用次数
引用次数
年份
Consensus stabilization in stochastic multi-agent systems with Markovian switching topology, noises and delay
P Ming, J Liu, S Tan, S Li, L Shang, X Yu
Neurocomputing 200, 1-10, 2016
452016
Consensus stabilization of stochastic multi-agent system with Markovian switching topologies and stochastic communication noise
P Ming, J Liu, S Tan, G Wang, L Shang, C Jia
Journal of the Franklin Institute 352 (9), 3684-3700, 2015
442015
Stable recursive canonical variate state space modeling for time-varying processes
L Shang, J Liu, K Turksoy, QM Shao, A Cinar
Control Engineering Practice 36, 113-119, 2015
382015
Recursive fault detection and identification for time-varying processes
L Shang, J Liu, Y Zhang
Industrial & Engineering Chemistry Research 55 (46), 12149-12160, 2016
322016
Modeling of HVAC systems for fault diagnosis
A Qiu, Z Yan, Q Deng, J Liu, L Shang, J Wu
IEEE Access 8, 146248-146262, 2020
272020
Fault detection based on diffusion maps and k nearest neighbor diffusion distance of feature space
G Wang, J Liu, Y Li, L Shang
Journal of Chemical Engineering of Japan 48 (9), 756-765, 2015
232015
Efficient recursive kernel canonical variate analysis for monitoring nonlinear time‐varying processes
L Shang, J Liu, Y Zhang
The Canadian Journal of Chemical Engineering 96 (1), 205-214, 2018
212018
Efficient recursive canonical variate analysis approach for monitoring time‐varying processes
L Shang, J Liu, Y Zhang, G Wang
Journal of Chemometrics 31 (1), e2858, 2017
182017
Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis
P Xu, J Liu, L Shang, W Zhang
Measurement 196, 111181, 2022
142022
Canonical variate nonlinear principal component analysis for monitoring nonlinear dynamic processes
L Shang, A Qiu, P Xu, F Yu
Journal of Chemical Engineering of Japan 55 (1), 29-37, 2022
112022
Recursive ensemble canonical variate analysis for online incipient fault detection in dynamic processes
L Shang, Y Gu, Y Tang, H Fu, L Hua
Measurement 220, 113411, 2023
102023
Fault detection and identification based on explicit polynomial mapping and combined statistic in nonlinear dynamic processes
LH Liangliang Shang, Kexin Shi, Chen Ma, Aibing Qiu
IEEE Access 9 (149050-149066), 2021
92021
Hybrid divergence based on mean absolute scaled error for incipient fault detection
Y Tang, L Shang, R Zhang, J Li, H Fu
Engineering Applications of Artificial Intelligence 129, 107662, 2024
62024
Closed-loop time-varying continuous-time recursive subspace-based prediction via principle angles rotation
M Yu, G Guo, J Liu, L Shang
ISA transactions 122, 135-145, 2022
62022
Canonical residual based incipient fault detection method for industrial process
L Shang, Z Yan, J Li, A Qiu, H Zhang
2020 Chinese Control And Decision Conference (CCDC), 987-992, 2020
62020
基于 KECA 的非线性工业过程故障检测与诊断新方法
邓明月, 刘建昌, 许鹏, 谭树彬, 商亮亮
化工学报 71 (5), 2151-2163, 2020
52020
Soft sensor modeling for multimode process based on adaptive efficient recursive canonical variate analysis
L SHANG, J Liu, S Tan
Control Theory Applications 33 (03), 380-3, 2016
52016
Feature learning based on entropy estimation density peak clustering and stacked autoencoder for industrial process monitoring
F Yu, J Liu, D Liu, H Wang, L Shang
The Canadian Journal of Chemical Engineering 101 (7), 3998-4015, 2023
32023
Incipient Fault Detection Based on Kolmogorov-Smironv Test
J Pan, F Zhang, P Li, Y Tang, Y Gu, L Shang
2022 34th Chinese Control and Decision Conference (CCDC), 4053-4058, 2022
32022
基于改进 PCA 空调系统传感器故障检测与诊断
单彪, 堵俊, 商亮亮
控制工程 27 (4), 765, 2020
32020
系统目前无法执行此操作,请稍后再试。
文章 1–20