Making sense of word embeddings M Pelevina, N Arefyev, C Biemann, A Panchenko arXiv preprint arXiv:1708.03390, 2017 | 174 | 2017 |
Neural entity linking: A survey of models based on deep learning Ö Sevgili, A Shelmanov, M Arkhipov, A Panchenko, C Biemann Semantic Web 13 (3), 527-570, 2022 | 142 | 2022 |
Targer: Neural argument mining at your fingertips A Chernodub, O Oliynyk, P Heidenreich, A Bondarenko, M Hagen, ... Proceedings of the 57th Annual Meeting of the Association for Computational …, 2019 | 105 | 2019 |
Taxi at semeval-2016 task 13: a taxonomy induction method based on lexico-syntactic patterns, substrings and focused crawling A Panchenko, S Faralli, E Ruppert, S Remus, H Naets, C Fairon, ... Proceedings of the 10th international workshop on semantic evaluation …, 2016 | 97 | 2016 |
Overview of Touché 2020: argument retrieval A Bondarenko, M Fröbe, M Beloucif, L Gienapp, Y Ajjour, A Panchenko, ... Experimental IR Meets Multilinguality, Multimodality, and Interaction: 11th …, 2020 | 93 | 2020 |
Overview of Touché 2021: argument retrieval A Bondarenko, L Gienapp, M Fröbe, M Beloucif, Y Ajjour, A Panchenko, ... Experimental IR Meets Multilinguality, Multimodality, and Interaction: 12th …, 2021 | 92 | 2021 |
RUSSE: the first workshop on Russian semantic similarity A Panchenko, N Loukachevitch, D Ustalov, D Paperno, C Meyer, ... arXiv preprint arXiv:1803.05820, 2018 | 81 | 2018 |
Human and machine judgements for Russian semantic relatedness A Panchenko, D Ustalov, N Arefyev, D Paperno, N Konstantinova, ... Analysis of Images, Social Networks and Texts: 5th International Conference …, 2017 | 80 | 2017 |
A graph-based approach to skill extraction from text I Kivimäki, A Panchenko, A Dessy, D Verdegem, P Francq, H Bersini, ... Proceedings of TextGraphs-8 graph-based methods for natural language …, 2013 | 63 | 2013 |
Unsupervised does not mean uninterpretable: The case for word sense induction and disambiguation A Panchenko, E Ruppert, S Faralli, SP Ponzetto, C Biemann Proceedings of the 15th Conference of the European Chapter of the …, 2017 | 61 | 2017 |
Watset: Automatic induction of synsets from a graph of synonyms D Ustalov, A Panchenko, C Biemann arXiv preprint arXiv:1704.07157, 2017 | 55 | 2017 |
Every child should have parents: a taxonomy refinement algorithm based on hyperbolic term embeddings R Aly, S Acharya, A Ossa, A Köhn, C Biemann, A Panchenko arXiv preprint arXiv:1906.02002, 2019 | 52 | 2019 |
RUSSE'2018: a shared task on word sense induction for the Russian language A Panchenko, A Lopukhina, D Ustalov, K Lopukhin, N Arefyev, ... arXiv preprint arXiv:1803.05795, 2018 | 52 | 2018 |
Building a web-scale dependency-parsed corpus from CommonCrawl A Panchenko, E Ruppert, S Faralli, SP Ponzetto, C Biemann arXiv preprint arXiv:1710.01779, 2017 | 50 | 2017 |
Paradetox: Detoxification with parallel data V Logacheva, D Dementieva, S Ustyantsev, D Moskovskiy, D Dale, ... Proceedings of the 60th Annual Meeting of the Association for Computational …, 2022 | 48 | 2022 |
Text detoxification using large pre-trained neural models D Dale, A Voronov, D Dementieva, V Logacheva, O Kozlova, N Semenov, ... arXiv preprint arXiv:2109.08914, 2021 | 48 | 2021 |
How certain is your Transformer? A Shelmanov, E Tsymbalov, D Puzyrev, K Fedyanin, A Panchenko, ... Proceedings of the 16th Conference of the European Chapter of the …, 2021 | 43 | 2021 |
Active learning for sequence tagging with deep pre-trained models and Bayesian uncertainty estimates A Shelmanov, D Puzyrev, L Kupriyanova, D Belyakov, D Larionov, ... arXiv preprint arXiv:2101.08133, 2021 | 43 | 2021 |
A semantic similarity measure based on lexico-syntactic patterns. A Panchenko, O Morozova, H Naets KONVENS, 174-178, 2012 | 42 | 2012 |
Improving neural entity disambiguation with graph embeddings Ö Sevgili, A Panchenko, C Biemann Proceedings of the 57th annual meeting of the association for computational …, 2019 | 40 | 2019 |