关注
Sebastian Moraga
Sebastian Moraga
在 sfu.ca 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem
E Colmenares, GN Gatica, S Moraga
ESAIM: Mathematical Modelling and Numerical Analysis 54 (5), 1525-1568, 2020
532020
Deep neural networks are effective at learning high-dimensional Hilbert-valued functions from limited data
B Adcock, S Brugiapaglia, N Dexter, S Moraga
arXiv preprint arXiv:2012.06081, 2020
422020
Near-optimal learning of Banach-valued, high-dimensional functions via deep neural networks
B Adcock, S Brugiapaglia, N Dexter, S Moraga
arXiv preprint arXiv:2211.12633, 2022
222022
Towards optimal sampling for learning sparse approximations in high dimensions
B Adcock, JM Cardenas, N Dexter, S Moraga
High-Dimensional Optimization and Probability: With a View Towards Data …, 2022
142022
A fully-mixed finite element method for the steady state Oberbeck–Boussinesq system
E Colmenares, GN Gatica, S Moraga, R Ruiz-Baier
The SMAI Journal of computational mathematics 6, 125-157, 2020
122020
On efficient algorithms for computing near-best polynomial approximations to high-dimensional, Hilbert-valued functions from limited samples
B Adcock, S Brugiapaglia, N Dexter, S Moraga
arXiv preprint arXiv:2203.13908, 2022
102022
Optimal approximation of infinite-dimensional holomorphic functions
B Adcock, N Dexter, S Moraga
Calcolo 61 (1), 12, 2024
82024
Optimal approximation of infinite-dimensional holomorphic functions
B Adcock, N Dexter, S Moraga
arXiv preprint arXiv:2305.18642, 2023
72023
Learning smooth functions in high dimensions: from sparse polynomials to deep neural networks
B Adcock, S Brugiapaglia, N Dexter, S Moraga
arXiv preprint arXiv:2404.03761, 2024
42024
On Efficient Algorithms for Computing Near-Best Polynomial Approximations to High-Dimensional, Hilbert-Valued Functions from Limited Samples
B Adcock, S Brugiapaglia, N Dexter, S Moraga
12024
Effective deep neural network architectures for learning high-dimensional Banach-valued functions from limited data
N Dexter, B Adcock, S Brugiapaglia, S Moraga
2022 Fall Southeastern Sectional Meeting. AMS, 2022
12022
Optimal deep learning of holomorphic operators between Banach spaces
B Adcock, N Dexter, S Moraga
arXiv preprint arXiv:2406.13928, 2024
2024
Learning High-Dimensional Hilbert-Valued Functions With Deep Neural Networks From Limited Data.
B Adcock, S Brugiapaglia, NC Dexter, S Moraga
AAAI Spring Symposium: MLPS, 2021
2021
Centro de Investigación en Ingenierıa Matemática (CI 2 MA)
E Colmenares, GN Gatica, S Moraga, R Ruiz-Baier
NEAR-OPTIMAL LEARNING OF BANACH-VALUED, HIGH-DIMENSIONAL FUNCTIONS VIA DEEP NEURAL NETWORKS FOR PARAMETRIC PDES
S MORAGA, BEN ADCOCK, S BRUGIAPAGLIA, N DEXTER
The quest for optimal sampling strategies for learning sparse approximations in high dimensions
JM Cardenas, N Dexter, S Moraga, B Adcock
系统目前无法执行此操作,请稍后再试。
文章 1–16