D4rl: Datasets for deep data-driven reinforcement learning J Fu, A Kumar, O Nachum, G Tucker, S Levine arXiv preprint arXiv:2004.07219, 2020 | 982 | 2020 |
Data-Efficient Hierarchical Reinforcement Learning O Nachum, S Gu, H Lee, S Levine Advances in Neural Information Processing Systems, 2018 | 946 | 2018 |
Behavior regularized offline reinforcement learning Y Wu, G Tucker, O Nachum arXiv preprint arXiv:1911.11361, 2019 | 690 | 2019 |
A Lyapunov-based Approach to Safe Reinforcement Learning Y Chow, O Nachum, E Duenez-Guzman, M Ghavamzadeh Advances in Neural Information Processing Systems, 2018 | 558 | 2018 |
Bridging the gap between value and policy based reinforcement learning O Nachum, M Norouzi, K Xu, D Schuurmans Advances in neural information processing systems 30, 2017 | 504 | 2017 |
Rt-1: Robotics transformer for real-world control at scale A Brohan, N Brown, J Carbajal, Y Chebotar, J Dabis, C Finn, ... arXiv preprint arXiv:2212.06817, 2022 | 499 | 2022 |
Learning to remember rare events Ł Kaiser, O Nachum, A Roy, S Bengio International Conference for Learning Representations, 2017 | 414 | 2017 |
Morphnet: Fast & simple resource-constrained structure learning of deep networks A Gordon, E Eban, O Nachum, B Chen, H Wu, TJ Yang, E Choi Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 392 | 2018 |
Dualdice: Behavior-agnostic estimation of discounted stationary distribution corrections O Nachum, Y Chow, B Dai, L Li Advances in neural information processing systems 32, 2019 | 332 | 2019 |
Identifying and correcting label bias in machine learning H Jiang, O Nachum International conference on artificial intelligence and statistics, 702-712, 2020 | 320 | 2020 |
Deepmdp: Learning continuous latent space models for representation learning C Gelada, S Kumar, J Buckman, O Nachum, MG Bellemare International conference on machine learning, 2170-2179, 2019 | 307 | 2019 |
Offline reinforcement learning with fisher divergence critic regularization I Kostrikov, R Fergus, J Tompson, O Nachum International Conference on Machine Learning, 5774-5783, 2021 | 276 | 2021 |
Deep Reinforcement Learning for Vision-Based Robotic Grasping: A Simulated Comparative Evaluation of Off-Policy Methods D Quillen, E Jang, O Nachum, C Finn, J Ibarz, S Levine IEEE International Conference on Robotics and Automation, 2018 | 257 | 2018 |
Lyapunov-based safe policy optimization for continuous control Y Chow, O Nachum, A Faust, E Duenez-Guzman, M Ghavamzadeh arXiv preprint arXiv:1901.10031, 2019 | 254 | 2019 |
Algaedice: Policy gradient from arbitrary experience O Nachum, B Dai, I Kostrikov, Y Chow, L Li, D Schuurmans arXiv preprint arXiv:1912.02074, 2019 | 234 | 2019 |
Near-optimal representation learning for hierarchical reinforcement learning O Nachum, S Gu, H Lee, S Levine arXiv preprint arXiv:1810.01257, 2018 | 230 | 2018 |
Imitation learning via off-policy distribution matching I Kostrikov, O Nachum, J Tompson arXiv preprint arXiv:1912.05032, 2019 | 184 | 2019 |
Multi-game decision transformers KH Lee, O Nachum, MS Yang, L Lee, D Freeman, S Guadarrama, ... Advances in Neural Information Processing Systems 35, 27921-27936, 2022 | 178 | 2022 |
Rl unplugged: A suite of benchmarks for offline reinforcement learning C Gulcehre, Z Wang, A Novikov, T Paine, S Gómez, K Zolna, R Agarwal, ... Advances in Neural Information Processing Systems 33, 7248-7259, 2020 | 163 | 2020 |
Opal: Offline primitive discovery for accelerating offline reinforcement learning A Ajay, A Kumar, P Agrawal, S Levine, O Nachum arXiv preprint arXiv:2010.13611, 2020 | 161 | 2020 |