Macroscopic description for networks of spiking neurons E Montbrió, D Pazó, A Roxin Physical Review X 5 (2), 021028, 2015 | 425 | 2015 |
Synchronization of two interacting populations of oscillators E Montbrió, J Kurths, B Blasius Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 70 (5 …, 2004 | 228 | 2004 |
Low-dimensional dynamics of populations of pulse-coupled oscillators D Pazó, E Montbrió Physical Review X 4 (1), 011009, 2014 | 199 | 2014 |
Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks F Devalle, A Roxin, E Montbrió PLoS computational biology 13 (12), e1005881, 2017 | 105 | 2017 |
Existence of hysteresis in the Kuramoto model with bimodal frequency distributions D Pazó, E Montbrió Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 80 (4 …, 2009 | 87 | 2009 |
From quasiperiodic partial synchronization to collective chaos in populations of inhibitory neurons with delay D Pazó, E Montbrió Physical review letters 116 (23), 238101, 2016 | 86 | 2016 |
Network mechanisms underlying the role of oscillations in cognitive tasks H Schmidt, D Avitabile, E Montbrió, A Roxin PLoS computational biology 14 (9), e1006430, 2018 | 82 | 2018 |
Universal behavior in populations composed of excitable and self-oscillatory elements D Pazó, E Montbrió Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 73 (5 …, 2006 | 76 | 2006 |
Shear diversity prevents collective synchronization E Montbrió, D Pazó Physical Review Letters 106 (25), 254101, 2011 | 68 | 2011 |
Time delay in the Kuramoto model with bimodal frequency distribution E Montbrió, D Pazó, J Schmidt Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 74 (5 …, 2006 | 63 | 2006 |
Anomalous phase synchronization in populations of nonidentical oscillators B Blasius, E Montbrió, J Kurths Physical Review E 67 (3), 035204, 2003 | 59 | 2003 |
Exact mean-field theory explains the dual role of electrical synapses in collective synchronization E Montbrió, D Pazó Physical review letters 125 (24), 248101, 2020 | 55 | 2020 |
Dynamics of a large system of spiking neurons with synaptic delay F Devalle, E Montbrió, D Pazó Physical Review E 98 (4), 042214, 2018 | 55 | 2018 |
How effective delays shape oscillatory dynamics in neuronal networks A Roxin, E Montbrió Physica D: Nonlinear Phenomena 240 (3), 323-345, 2011 | 52 | 2011 |
Exact firing rate model reveals the differential effects of chemical versus electrical synapses in spiking networks B Pietras, F Devalle, A Roxin, A Daffertshofer, E Montbrió Physical Review E 100 (4), 042412, 2019 | 51 | 2019 |
Kuramoto model for excitation-inhibition-based oscillations E Montbrió, D Pazó Physical review letters 120 (24), 244101, 2018 | 42 | 2018 |
Using nonisochronicity to control synchronization in ensembles of nonidentical oscillators E Montbrió, B Blasius Chaos: An Interdisciplinary Journal of Nonlinear Science 13 (1), 291-308, 2003 | 36 | 2003 |
Synchrony-induced modes of oscillation of a neural field model JM Esnaola-Acebes, A Roxin, D Avitabile, E Montbrió Physical Review E 96 (5), 052407, 2017 | 34 | 2017 |
Synchronization scenarios in the Winfree model of coupled oscillators R Gallego, E Montbrió, D Pazó Physical Review E 96 (4), 042208, 2017 | 33 | 2017 |
Collective synchronization in the presence of reactive coupling and shear diversity E Montbrió, D Pazó Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 84 (4 …, 2011 | 28 | 2011 |