关注
Santiago Vargas
Santiago Vargas
Theoretical Chemistry Graduate Student, UCLA
在 g.ucla.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
A foundation model for atomistic materials chemistry
I Batatia, P Benner, Y Chiang, AM Elena, DP Kovács, J Riebesell, ...
arXiv preprint arXiv:2401.00096, 2023
712023
Seasonal changes in diet and chemical defense in the Climbing Mantella frog (Mantella laevigata)
NA Moskowitz, AB Roland, EK Fischer, N Ranaivorazo, C Vidoudez, ...
PLoS One 13 (12), e0207940, 2018
282018
Team-based learning for scientific computing and automated experimentation: visualization of colored reactions
S Vargas, S Zamirpour, S Menon, A Rothman, F Häse, ...
Journal of Chemical Education 97 (3), 689-694, 2020
272020
Machine learning to predict Diels–Alder reaction barriers from the reactant state electron density
S Vargas, MR Hennefarth, Z Liu, AN Alexandrova
Journal of chemical theory and computation 17 (10), 6203-6213, 2021
242021
Computational and Experimental Design of Quinones for Electrochemical CO2 Capture and Concentration
AM Zito, D Bím, S Vargas, AN Alexandrova, JY Yang
ACS Sustainable Chemistry & Engineering 10 (34), 11387-11395, 2022
112022
Directed Evolution of Protoglobin Optimizes the Enzyme Electric Field
ANA Shobhit S. Chaturvedi, Santiago Vargas, Pujan Ajmera
Journal of the American Chemical Society, 2024
32024
High-throughput quantum theory of atoms in molecules (QTAIM) for geometric deep learning of molecular and reaction properties
AA Santiago Vargas, Winston Gee
Digital Discovery, 2024
2*2024
An Artificial Intelligence Framework for Optimal Drug Design
G Ramey, S Vargas, D De Alwis, AN Alexandrova, J Distefano III, ...
bioRxiv, 2022.10. 29.514379, 2022
22022
Machine-learning prediction of protein function from the portrait of its intramolecular electric field
S Vargas, S Chaturvedi, A Alexandrova
12024
HEPOM: A predictive framework for accelerated Hydrolysis Energy Predictions of Organic Molecules
RD Guha, S Vargas, EWC Spotte-Smith, AR Epstein, MC Venetos, M Wen, ...
AI for Accelerated Materials Design-NeurIPS 2023 Workshop, 0
1
Thermodynamic Equilibrium versus Kinetic Trapping: Thermalization of Cluster Catalyst Ensembles Can Extend Beyond Reaction Time Scales
P Poths, S Vargas, P Sautet, AN Alexandrova
ACS Catalysis 14 (7), 5403-5415, 2024
2024
Geometric Learning for Quantum-Informed, Machine Learning and Analysis of Electrostatic Preorganization
S Vargas
UCLA, 2024
2024
Prediction of Reaction Orthogonality using Machine Learning
H Roshandel, S Vargas, A Lai, A Alexandrova, P Diaconescu
2023
系统目前无法执行此操作,请稍后再试。
文章 1–13