Assessing neural network representations during training using noise-resilient diffusion spectral entropy D Liao, C Liu, BW Christensen, A Tong, G Huguet, G Wolf, M Nickel, ... 2024 58th Annual Conference on Information Sciences and Systems (CISS), 1-6, 2024 | 9 | 2024 |
A heat diffusion perspective on geodesic preserving dimensionality reduction G Huguet, A Tong, E De Brouwer, Y Zhang, G Wolf, I Adelstein, ... Advances in Neural Information Processing Systems 36, 2024 | 9 | 2024 |
Diffusion curvature for estimating local curvature in high dimensional data D Bhaskar, K MacDonald, O Fasina, D Thomas, B Rieck, I Adelstein, ... Advances in Neural Information Processing Systems 35, 21738-21749, 2022 | 7 | 2022 |
Morse theory for the uniform energy IM Adelstein, J Epstein Journal of Geometry 108, 1193-1205, 2017 | 7 | 2017 |
Existence and nonexistence of half-geodesics on 𝑆² I Adelstein Proceedings of the American Mathematical Society 144 (7), 3085-3091, 2016 | 7 | 2016 |
Minimizing closed geodesics via critical points of the uniform energy I Adelstein arXiv preprint arXiv:1406.0372, 2014 | 7 | 2014 |
The length of the shortest closed geodesic on positively curved 2-spheres I Adelstein, F Vargas Pallete Mathematische Zeitschrift, 1-13, 2020 | 6 | 2020 |
Minimizing geodesic nets and critical points of distance IM Adelstein Differential Geometry and its Applications 70, 101624, 2020 | 5 | 2020 |
The G-invariant spectrum and non-orbifold singularities IM Adelstein, MR Sandoval Archiv der Mathematik 109, 563-573, 2017 | 5 | 2017 |
Geometry-aware autoencoders for metric learning and generative modeling on data manifolds X Sun, D Liao, K MacDonald, Y Zhang, G Huguet, G Wolf, I Adelstein, ... ICML 2024 Workshop on Geometry-grounded Representation Learning and …, 2024 | 4 | 2024 |
Reframing the Pythagorean theorem IM Adelstein, GL Ashline The College Mathematics Journal 50 (1), 28-35, 2019 | 4 | 2019 |
Neural FIM for learning Fisher information metrics from point cloud data O Fasina, G Huguet, A Tong, Y Zhang, G Wolf, M Nickel, I Adelstein, ... International Conference on Machine Learning, 9814-9826, 2023 | 3 | 2023 |
Minimizing closed geodesics on polygons and disks I Adelstein, A Azvolinsky, J Hinman, A Schlesinger Involve, a Journal of Mathematics 14 (1), 11-52, 2021 | 3 | 2021 |
Geometry-aware generative autoencoders for warped riemannian metric learning and generative modeling on data manifolds X Sun, D Liao, K MacDonald, Y Zhang, C Liu, G Huguet, G Wolf, ... arXiv preprint arXiv:2410.12779, 2024 | 2 | 2024 |
Assessing neural network representations during training using data diffusion spectra D Liao, C Liu, A Tong, G Huguet, G Wolf, M Nickel, I Adelstein, ... | 2 | 2023 |
Diffusion-based methods for estimating curvature in data D Bhaskar, K MacDonald, D Thomas, S Zhao, K You, J Paige, Y Aizenbud, ... ICLR 2022 Workshop on Geometrical and Topological Representation Learning, 2022 | 2 | 2022 |
Closed geodesics on doubled polygons IM Adelstein, AYW Fong Involve, a Journal of Mathematics 12 (7), 1219-1227, 2019 | 2 | 2019 |
Characterizing round spheres using half-geodesics IM Adelstein, B Schmidt Proceedings of the National Academy of Sciences 116 (29), 14501-14504, 2019 | 2 | 2019 |
BLIS-Net: Classifying and Analyzing Signals on Graphs C Xu, L Goldman, V Guo, B Hollander-Bodie, M Trank-Greene, I Adelstein, ... arXiv preprint arXiv:2310.17579, 2023 | 1 | 2023 |
Exploring the Manifold of Neural Networks Using Diffusion Geometry E Abel, P Crevasse, Y Grinspan, S Mazioud, F Ogundipe, K Reimann, ... arXiv preprint arXiv:2411.12626, 2024 | | 2024 |