Elliptic systems of phase transition type ND Alikakos, G Fusco, P Smyrnelis Springer International Publishing, 2018 | 38 | 2018 |
On minimizers of the Hamiltonian system u ″=∇ W (u) and on the existence of heteroclinic, homoclinic and periodic orbits P Antonopoulos, P Smyrnelis Indiana University Mathematics Journal, 1503-1524, 2016 | 29 | 2016 |
Theory of light-matter interaction in nematic liquid crystals and the second Painlevé equation MG Clerc, JD Dávila, M Kowalczyk, P Smyrnelis, E Vidal-Henriquez Calculus of Variations and Partial Differential Equations 56 (4), 93, 2017 | 22 | 2017 |
Gradient estimates for semilinear elliptic systems and other related results P Smyrnelis Proceedings of the Royal Society of Edinburgh Section A: Mathematics 145 (6 …, 2015 | 22 | 2015 |
Multiphase solutions to the vector Allen–Cahn equation: crystalline and other complex symmetric structures PW Bates, G Fusco, P Smyrnelis Archive for Rational Mechanics and Analysis 225, 685-715, 2017 | 14 | 2017 |
Entire solutions with six-fold junctions to elliptic gradient systems with triangle symmetry P Bates, G Fuscoy, P Smyrnelis Advanced Nonlinear Studies 13 (1), 1-11, 2013 | 14 | 2013 |
Connecting orbits in Hilbert spaces and applications to PDE P Smyrnelis arXiv preprint arXiv:1903.09473, 2019 | 13 | 2019 |
Symmetry breaking and restoration in the Ginzburg–Landau model of nematic liquid crystals MG Clerc, M Kowalczyk, P Smyrnelis Journal of Nonlinear Science 28 (3), 1079-1107, 2018 | 10 | 2018 |
On the origin of the optical vortex lattices in a nematic liquid crystal light valve E Calisto, MG Clerc, M Kowalczyk, P Smyrnelis Optics Letters 44 (12), 2947-2950, 2019 | 8 | 2019 |
Minimal heteroclinics for a class of fourth order ODE systems P Smyrnelis Nonlinear Analysis 173, 154-163, 2018 | 8 | 2018 |
Existence of lattice solutions to semilinear elliptic systems with periodic potential ND Alikakos, P Smyrnelis Electr. J. Diff. Equations, 1-15, 2012 | 8 | 2012 |
Entire Vortex Solutions of Negative Degree for the Anisotropic Ginzburg–Landau System M Kowalczyk, X Lamy, P Smyrnelis Archive for Rational Mechanics and Analysis 245 (1), 565-586, 2022 | 6 | 2022 |
On Abrikosov lattice solutions of the Ginzburg-Landau equations I Chenn, P Smyrnelis, IM Sigal Mathematical Physics, Analysis and Geometry 21, 1-40, 2018 | 6 | 2018 |
Gradient theory of domain walls in thin, nematic liquid crystals films MG Clerc, M Kowalczyk, P Smyrnelis Communications in Contemporary Mathematics 22 (07), 1950063, 2020 | 4 | 2020 |
The connecting solution of the Painlev\'e phase transition model MG Clerc, M Kowalczyk, P Smyrnelis arXiv preprint arXiv:1807.05580, 2018 | 4 | 2018 |
A maximum principle for the system Δu − ∇W(u)=0 P Antonopoulos, P Smyrnelis Comptes Rendus. Mathématique 354 (6), 595-600, 2016 | 3 | 2016 |
The Hastings-McLeod solution to the generalized second Painlevé equation MG Clerc, M Kowalczyk, P Smyrnelis Preprint arXiv, 1807 | 2 | 1807 |
Double layered solutions to the extended Fisher–Kolmogorov PDE P Smyrnelis Nonlinear Differential Equations and Applications NoDEA 28 (5), 48, 2021 | 1 | 2021 |
Phase transition and Ginzburg-Landau models occuring in the Physics of liquid crystals P Smyrnelis Proceedings of the 16th Panhellenic Conference on Mathematical Analysis, M …, 2018 | 1 | 2018 |
The harmonic map problem with mixed boundary conditions P Smyrnelis Proceedings of the American Mathematical Society 143 (3), 1299-1313, 2015 | 1 | 2015 |