Variability of Arctic sea ice thickness using PIOMAS and the CESM Large Ensemble Z Labe, G Magnusdottir, H Stern Journal of Climate 31 (8), 3233-3247, 2018 | 102 | 2018 |
The record low Bering Sea ice extent in 2018: context, impacts, and an assessment of the role of anthropogenic climate change RL Thoman, US Bhatt, PA Bieniek, BR Brettschneider, M Brubaker, ... Bulletin of the American Meteorological Society 101 (1), S53-S58, 2020 | 75 | 2020 |
Warm Arctic, cold Siberia pattern: Role of full Arctic amplification versus sea ice loss alone Z Labe, Y Peings, G Magnusdottir Geophysical Research Letters 47 (17), e2020GL088583, 2020 | 74 | 2020 |
Sea surface temperature ML Timmermans, Z Labe NOAA Arctic Report Card 2022, 1-6, 2022 | 71* | 2022 |
The Arctic JK Andersen, LM Andreassen, EH Baker, TJ Ballinger, LT Berner, ... Bulletin of the American Meteorological Society 101 (8), S239-S286, 2020 | 69* | 2020 |
Are 100 ensemble members enough to capture the remote atmospheric response to+ 2° C Arctic sea ice loss? Y Peings, ZM Labe, G Magnusdottir Journal of Climate 34 (10), 3751-3769, 2021 | 60 | 2021 |
Detecting Climate Signals Using Explainable AI With Single‐Forcing Large Ensembles ZM Labe, EA Barnes Journal of Advances in Modeling Earth Systems 13 (6), e2021MS002464, 2021 | 48 | 2021 |
Contributions of ice thickness to the atmospheric response from projected Arctic sea ice loss Z Labe, Y Peings, G Magnusdottir Geophysical Research Letters 45 (11), 5635-5642, 2018 | 43 | 2018 |
The effect of QBO phase on the atmospheric response to projected Arctic sea ice loss in early winter Z Labe, Y Peings, G Magnusdottir Geophysical Research Letters 46 (13), 7663-7671, 2019 | 42 | 2019 |
Identifying anomalously early spring onsets in the CESM large ensemble project Z Labe, T Ault, R Zurita-Milla Climate Dynamics 48, 3949-3966, 2017 | 31 | 2017 |
The Arctic ML Druckenmiller, TA Moon, RL Thoman, TJ Ballinger, LT Berner, ... Bulletin of the American Meteorological Society 102 (8), S263-S316, 2021 | 22* | 2021 |
Predicting slowdowns in decadal climate warming trends with explainable neural networks ZM Labe, EA Barnes Geophysical Research Letters 49 (9), e2022GL098173, 2022 | 20 | 2022 |
Internal variability and forcing influence model–satellite differences in the rate of tropical tropospheric warming S Po-Chedley, JT Fasullo, N Siler, ZM Labe, EA Barnes, CJW Bonfils, ... Proceedings of the National Academy of Sciences 119 (47), e2209431119, 2022 | 18 | 2022 |
The Arctic RL Thoman, ML Druckenmiller, TA Moon, LM Andreassen, E Baker, ... Bulletin of the American Meteorological Society 103 (8), S257-S306, 2022 | 16 | 2022 |
Arctic Report Card 2020: Sea Surface Temperature ML Timmermans, Z Labe NOAA Arctic Report Card 2020, 53-57, 2020 | 11 | 2020 |
Why has the Summertime Central US Warming Hole Not Disappeared? JK Eischeid, MP Hoerling, XW Quan, A Kumar, J Barsugli, ZM Labe, ... Journal of Climate 36 (20), 7319-7336, 2023 | 9 | 2023 |
Introduction STATE OF THE CLIMATE IN 2022 T Boyer, E Bartow-Gillies, A Abida, M Ades, R Adler, S Adusumilli, ... Bulletin of the American Meteorological Society 104 (9), s1-s10, 2023 | 9 | 2023 |
Comparison of climate model large ensembles with observations in the Arctic using simple neural networks ZM Labe, EA Barnes Earth and Space Science 9 (7), e2022EA002348, 2022 | 9 | 2022 |
Identifying the regional emergence of climate patterns in the ARISE-SAI-1.5 simulations ZM Labe, EA Barnes, J Hurrell Environmental Research Letters 18 (4), 1-12, 2023 | 6 | 2023 |
Arctic temperatures Z Labe Professional. Zachary Labe, Visualization Website, 2021 | 6* | 2021 |