Global universal approximation of functional input maps on weighted spaces C Cuchiero, P Schmocker, J Teichmann arXiv preprint arXiv:2306.03303, 2023 | 15 | 2023 |
Chaotic hedging with iterated integrals and neural networks A Neufeld, P Schmocker arXiv preprint arXiv:2209.10166, 2022 | 13 | 2022 |
Universal approximation property of Banach space-valued random feature models including random neural networks A Neufeld, P Schmocker arXiv preprint arXiv:2312.08410, 2023 | 10 | 2023 |
Universal Approximation on Path Spaces and Applications in Finance P Schmocker Universität St.Gallen, 2022 | 6 | 2022 |
Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs A Neufeld, P Schmocker, S Wu Communications in Nonlinear Science and Numerical Simulation 143, 108556, 2025 | 3* | 2025 |
Deep Stochastic Portfolio Theory C Cuchiero, P Schmocker, J Teichmann | 2 | 2019 |
Universal approximation results for neural networks with non-polynomial activation function over non-compact domains A Neufeld, P Schmocker arXiv preprint arXiv:2410.14759, 2024 | 1 | 2024 |
Solving stochastic partial differential equations using neural networks in the Wiener chaos expansion A Neufeld, P Schmocker arXiv preprint arXiv:2411.03384, 2024 | | 2024 |