Linear programming V Chvátal Macmillan, 1983 | 4311 | 1983 |
The traveling salesman problem: a computational study DL Applegate Princeton university press, 2006 | 3954 | 2006 |
A greedy heuristic for the set-covering problem V Chvatal Mathematics of operations research 4 (3), 233-235, 1979 | 3467 | 1979 |
A combinatorial theorem in plane geometry V Chvátal Journal of Combinatorial Theory, Series B 18 (1), 39-41, 1975 | 901 | 1975 |
Edmonds polytopes and a hierarchy of combinatorial problems V Chvátal Discrete mathematics 4 (4), 305-337, 1973 | 856 | 1973 |
Tough graphs and Hamiltonian circuits V Chvátal Discrete Mathematics 5 (3), 215-228, 1973 | 826 | 1973 |
On certain polytopes associated with graphs V Chvátal Journal of Combinatorial Theory, Series B 18 (2), 138-154, 1975 | 814 | 1975 |
A method in graph theory JA Bondy, V Chvátal Discrete Mathematics 15 (2), 111-135, 1976 | 642 | 1976 |
Aggregations of inequalities V Chvátal, PL Hammer Studies in Integer Programming, Annals of Discrete Mathematics 1, 145-162, 1977 | 623 | 1977 |
On the solution of traveling salesman problems D Applegate, R Bixby, W Cook, V Chvátal Rheinische Friedrich-Wilhelms-Universität Bonn, 1998 | 615 | 1998 |
Many hard examples for resolution V Chvátal, E Szemerédi Journal of the ACM (JACM) 35 (4), 759-768, 1988 | 612 | 1988 |
A note on Hamiltonian circuits. V Chvátal, P Erdös Discret. Math. 2 (2), 111-113, 1972 | 612 | 1972 |
Crossing-free subgraphs M Ajtai, V Chvátal, MM Newborn, E Szemerédi North-Holland Mathematics Studies 60, 9-12, 1982 | 501 | 1982 |
Mick gets some (the odds are on his side)(satisfiability) V Chvátal, B Reed Proceedings., 33rd Annual Symposium on Foundations of Computer Science, 620-627, 1992 | 476 | 1992 |
On Hamilton's ideals V Chvátal Journal of Combinatorial Theory, Series B 12 (2), 163-168, 1972 | 443 | 1972 |
Concorde TSP solver D Applegate, R Bixby, V Chvatal, W Cook | 428 | 2006 |
Finding cuts in the TSP (A preliminary report) D Applegate, R Bixby, V Chvátal, W Cook Report, 1995 | 387 | 1995 |
Longest common subsequences of two random sequences V Chvatal, D Sankoff Journal of Applied Probability 12 (2), 306-315, 1975 | 336 | 1975 |
The tail of the hypergeometric distribution V Chvátal Discrete Mathematics 25 (3), 285-287, 1979 | 302 | 1979 |
Trivially, the Grundy number of an ordered graph is at least its chromatic number; to see that the inequality may be strict, consider the graph with vertices a, b, c, d, edges … V Chvátal Topics on perfect graphs 21, 63-65, 1984 | 281 | 1984 |