关注
Joshua Ojih
标题
引用次数
引用次数
年份
Predicting lattice thermal conductivity from fundamental material properties using machine learning techniques
G Qin, Y Wei, L Yu, J Xu, J Ojih, AD Rodriguez, H Wang, Z Qin, M Hu
Journal of Materials Chemistry A 11 (11), 5801-5810, 2023
182023
Machine learning accelerated discovery of promising thermal energy storage materials with high heat capacity
J Ojih, U Onyekpe, A Rodriguez, J Hu, C Peng, M Hu
ACS applied materials & interfaces 14 (38), 43277-43289, 2022
142022
Screening outstanding mechanical properties and low lattice thermal conductivity using global attention graph neural network
J Ojih, A Rodriguez, J Hu, M Hu
Energy and AI 14, 100286, 2023
102023
Efficiently searching extreme mechanical properties via boundless objective-free exploration and minimal first-principles calculations
J Ojih, M Al-Fahdi, AD Rodriguez, K Choudhary, M Hu
npj Computational Materials 8 (1), 143, 2022
102022
Graph theory and graph neural network assisted high-throughput crystal structure prediction and screening for energy conversion and storage
J Ojih, M Al-Fahdi, Y Yao, J Hu, M Hu
Journal of Materials Chemistry A 12 (14), 8502-8515, 2024
32024
Searching extreme mechanical properties using active machine learning and density functional theory
J Ojih
University of South Carolina, 2021
32021
High-throughput computational discovery of 3218 ultralow thermal conductivity and dynamically stable materials by dual machine learning models
J Ojih, C Shen, A Rodriguez, H Zhang, K Choudhary, M Hu
Journal of Materials Chemistry A 11 (44), 24169-24183, 2023
22023
Correction: Graph theory and graph neural network assisted high-throughput crystal structure prediction and screening for energy conversion and storage
J Ojih, M Al-Fahdi, Y Yao, J Hu, M Hu
Journal of Materials Chemistry A 12 (27), 16929-16929, 2024
2024
Energy and AI
J Ojih, A Rodriguez, J Hu, M Hu
系统目前无法执行此操作,请稍后再试。
文章 1–9