关注
Samuel B. Hopkins
Samuel B. Hopkins
在 mit.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
A nearly tight sum-of-squares lower bound for the planted clique problem
B Barak, S Hopkins, J Kelner, PK Kothari, A Moitra, A Potechin
SIAM Journal on Computing 48 (2), 687-735, 2019
2592019
Mixture models, robustness, and sum of squares proofs
SB Hopkins, J Li
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing …, 2018
1862018
Tensor principal component analysis via sum-of-squares proofs
SB Hopkins, J Shi, D Steurer
arXiv preprint arXiv:1507.03269, 2015
1802015
Fast spectral algorithms from sum-of-squares proofs: tensor decomposition and planted sparse vectors
SB Hopkins, T Schramm, J Shi, D Steurer
arXiv preprint arXiv:1512.02337, 2016
1562016
The power of sum-of-squares for detecting hidden structures
SB Hopkins, PK Kothari, A Potechin, P Raghavendra, T Schramm, ...
2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS …, 2017
1502017
Bayesian estimation from few samples: community detection and related problems
SB Hopkins, D Steurer
arXiv preprint arXiv:1710.00264, 2017
146*2017
Sub-gaussian mean estimation in polynomial time
SB Hopkins
arXiv preprint arXiv:1809.07425 120, 2018
120*2018
Statistical inference and the sum of squares method
S Hopkins
Cornell University, 2018
1092018
Quantum entropy scoring for fast robust mean estimation and improved outlier detection
Y Dong, S Hopkins, J Li
Advances in Neural Information Processing Systems 32, 2019
1042019
Robustly learning any clusterable mixture of gaussians
I Diakonikolas, SB Hopkins, D Kane, S Karmalkar
arXiv preprint arXiv:2005.06417, 2020
69*2020
Robust and heavy-tailed mean estimation made simple, via regret minimization
S Hopkins, J Li, F Zhang
Advances in Neural Information Processing Systems 33, 11902-11912, 2020
672020
On the integrality gap of degree-4 sum of squares for planted clique
SB Hopkins, P Kothari, AH Potechin, P Raghavendra, T Schramm
ACM Transactions on Algorithms (TALG) 14 (3), 1-31, 2018
67*2018
Statistical query algorithms and low-degree tests are almost equivalent
M Brennan, G Bresler, SB Hopkins, J Li, T Schramm
arXiv preprint arXiv:2009.06107, 2020
652020
Efficient mean estimation with pure differential privacy via a sum-of-squares exponential mechanism
SB Hopkins, G Kamath, M Majid
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing …, 2022
602022
Algorithms for heavy-tailed statistics: Regression, covariance estimation, and beyond
Y Cherapanamjeri, SB Hopkins, T Kathuria, P Raghavendra, ...
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing …, 2020
452020
Robustness implies privacy in statistical estimation
SB Hopkins, G Kamath, M Majid, S Narayanan
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, 497-506, 2023
412023
How hard is robust mean estimation?
SB Hopkins, J Li
Conference on learning theory, 1649-1682, 2019
352019
The Franz-Parisi criterion and computational trade-offs in high dimensional statistics
AS Bandeira, A El Alaoui, S Hopkins, T Schramm, AS Wein, I Zadik
Advances in Neural Information Processing Systems 35, 33831-33844, 2022
322022
A robust spectral algorithm for overcomplete tensor decomposition
SB Hopkins, T Schramm, J Shi
Conference on Learning Theory, 1683-1722, 2019
252019
Privacy induces robustness: Information-computation gaps and sparse mean estimation
K Georgiev, S Hopkins
Advances in neural information processing systems 35, 6829-6842, 2022
202022
系统目前无法执行此操作,请稍后再试。
文章 1–20