关注
Niklas TIllmanns
Niklas TIllmanns
Postgraduate Researcher
在 yale.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Trends in development of novel machine learning methods for the identification of gliomas in datasets that include non-glioma images: a systematic review
H Subramanian, R Dey, WR Brim, N Tillmanns, G Cassinelli Petersen, ...
Frontiers in oncology 11, 788819, 2021
82021
Machine learning models for classifying high-and low-grade gliomas: a systematic review and quality of reporting analysis
RC Bahar, S Merkaj, GI Cassinelli Petersen, N Tillmanns, H Subramanian, ...
Frontiers in Oncology 12, 856231, 2022
72022
Identifying clinically applicable machine learning algorithms for glioma segmentation: recent advances and discoveries
N Tillmanns, AE Lum, G Cassinelli, S Merkaj, T Verma, T Zeevi, L Staib, ...
Neuro-Oncology Advances 4 (1), vdac093, 2022
52022
NIMG-59. RADIOMIC FEATURE CLUSTER ANALYSIS OF IDH-MUTANT GLIOMA SUBTYPES
K Willms, S Chadha, M von Reppert, D Ramakrishnan, J Lost, ...
Neuro-Oncology 25 (Supplement_5), v199-v199, 2023
12023
Systematic Literature Review of Machine Learning Algorithms Using Pretherapy Radiologic Imaging for Glioma Molecular Subtype Prediction
J Lost, T Verma, L Jekel, M von Reppert, N Tillmanns, S Merkaj, ...
American Journal of Neuroradiology 44 (10), 1126-1134, 2023
12023
NIMG-71. Identifying clinically applicable machine learning algorithms for glioma segmentation using a systematic literature review
N Tillmanns, A Lum, WR Brim, H Subramanian, M Lin, K Bousabarah, ...
Neuro-Oncology 23 (Supplement_6), vi145-vi145, 2021
12021
Comparison of volumetric and 2D-based response methods in the PNOC-001 pediatric low-grade glioma clinical trial
M von Reppert, D Ramakrishnan, SC Brüningk, F Memon, S Abi Fadel, ...
Neuro-Oncology Advances 6 (1), vdad172, 2024
2024
Application of novel PACS-based informatics platform to identify imaging based predictors of CDKN2A allelic status in glioblastomas
N Tillmanns, J Lost, J Tabor, S Vasandani, S Vetsa, N Marianayagam, ...
Scientific Reports 13 (1), 22942, 2023
2023
P13. 02. A APPLICATION OF NOVEL PACS-BASED INFORMATICS PLATFORM TO IDENTIFY IMAGING BASED PREDICTORS OF CDKN2A ALLELIC STATUS IN GLIOBLASTOMAS
NJ Tillmanns, J Lost, J Tabor, S Vasandani, S Vetsa, N Marianayagam, ...
Neuro-Oncology 25 (Supplement_2), ii100-ii101, 2023
2023
Neuro-Oncology Advances
M von Reppert, D Ramakrishnan, SC Brüningk, F Memon, S Abi Fadel, ...
2023
Bias assessment of Artificial Intelligence papers in Glioma segmentation using TRIPOD (P14-9.005)
N Tillmanns, A Lum, W Brim, H Subramanian, S Payabvash, I Ikuta, ...
Neurology 98 (18 Supplement), 2022
2022
Machine learning approaches for automated segmentation of gliomas (P3-9.004)
N Tillmanns, A Lum, W Brim, H Subramanian, S Payabvash, I Ikuta, ...
Neurology 98 (18 Supplement), 2022
2022
Integration of Machine Learning Into Clinical Radiology Practice–Development of a Machine Learning Tool for Preoperative Glioma Grade Prediction (P14-9.002)
S Merkaj, T Zeevi, K Bousabarah, E Kazarian, MD Lin, A Pala, ...
Neurology 98 (18 Supplement), 2022
2022
Neuro-Oncology Advances
N Tillmanns, AE Lum, G Cassinelli, S Merkaj, T Verma, T Zeevi, L Staib, ...
2022
NIMG-38. MEASURING ADHERENCE TO TRIPOD OF ARTIFICIAL INTELLIGENCE PAPERS IN THE GLIOMA SEGMENTATION
N Tillmanns, A Lum, WR Brim, H Subramanian, M Lin, K Bousabarah, ...
Neuro-Oncology 23 (Suppl 6), vi137, 2021
2021
SYSTEMATIC LITERATURE REVIEW OF ARTIFICIAL INTELLIGENCE ALGORITHMS USING PRE-THERAPY MR IMAGING FOR GLIOMA MOLECULAR SUBTYPE CLASSIFICATION
J Lost, T Verma, N Tillmanns, WR Brim, H Subramanian, I Ikuta, R Bronen, ...
NEURO-ONCOLOGY 23, 139-139, 2021
2021
NIMG-02. PACS-INTEGRATED AUTO-SEGMENTATION WORKFLOW FOR BRAIN METASTASES USING NNU-NET
MA RADIOSURGERY
Neuro-oncology, 2000
2000
Clinical Implementation of Novel PACS-based Deep Learning Glioma Segmentation Algorithm
S Merkaj, K Bousabarah, L MingDe, A Pala, GC Petersen, L Jekel, ...
系统目前无法执行此操作,请稍后再试。
文章 1–18