A mathematical model of sulphite chemical aggression of limestones with high permeability. Part I. Modeling and qualitative analysis G Alì, V Furuholt, R Natalini, I Torcicollo Transport in porous media 69, 109-122, 2007 | 38 | 2007 |
Turing patterns in a reaction–diffusion system modeling hunting cooperation F Capone, MF Carfora, R De Luca, I Torcicollo Mathematics and Computers in Simulation 165, 172-180, 2019 | 37 | 2019 |
Longtime behavior of vertical throughflows for binary mixtures in porous layers F Capone, R De Luca, I Torcicollo International Journal of Non-Linear Mechanics 52, 1-7, 2013 | 30 | 2013 |
On the stability of vertical constant throughflows for binary mixtures in porous layers F Capone, V De Cataldis, R De Luca, I Torcicollo International Journal of Non-Linear Mechanics 59, 1-8, 2014 | 26 | 2014 |
A mathematical model of sulphite chemical aggression of limestones with high permeability. Part II: Numerical approximation G Alì, V Furuholt, R Natalini, I Torcicollo Transport in porous media 69, 175-188, 2007 | 25* | 2007 |
On the dynamics of an intraguild predator–prey model F Capone, MF Carfora, R De Luca, I Torcicollo Mathematics and Computers in Simulation 149, 17-31, 2018 | 20 | 2018 |
Stability of a continuous reaction-diffusion Cournot-Kopel duopoly game model S Rionero, I Torcicollo Acta Applicandae Mathematicae 132, 505-513, 2014 | 20 | 2014 |
On the dynamics of a non-linear Duopoly game model I Torcicollo International Journal of Non-Linear Mechanics 57, 31-38, 2013 | 20 | 2013 |
On an ill-posed problem in nonlinear heat conduction S Rionero, I Torcicollo Transport Theory and Statistical Physics 29 (1-2), 173-186, 2000 | 20 | 2000 |
On the dynamics of a nonlinear reaction–diffusion duopoly model S Rionero, I Torcicollo International Journal of Non-Linear Mechanics 99, 105-111, 2018 | 18 | 2018 |
Identification of epidemiological models: the case study of Yemen cholera outbreak MF Carfora, I Torcicollo Applicable Analysis 101 (10), 3744-3754, 2022 | 15 | 2022 |
Cross-diffusion-driven instability in a predator-prey system with fear and group defense M Francesca Carfora, I Torcicollo Mathematics 8 (8), 1244, 2020 | 15 | 2020 |
On the non-linear stability of a continuous duopoly model with constant conjectural variation I Torcicollo International Journal of Non-Linear Mechanics, 2016 | 15 | 2016 |
Su alcuni problemi di diffusione non lineare I Torcicollo Boll. Unione Mat. Ital., A 3 (3), 407-410, 2000 | 11 | 2000 |
A NOTE ON THE NONLINEAR POINTWISE STABILITY FOR THE EQUATION U\SB T=\DELTA F (U) IN THE EXTERIOR OF A SPHERE I Torcicollo, M Vitiello | 8 | 2003 |
On the nonlinear diffusion in the exterior of a sphere I Torcicollo, M Vitiello Waves And Stability In Continuous Media, 563-568, 2002 | 8 | 2002 |
Nonlinear stability and numerical simulations for a reaction–diffusion system modelling Allee effect on predators F Capone, MF Carfora, R De Luca, I Torcicollo International Journal of Nonlinear Sciences and Numerical Simulation 23 (5 …, 2022 | 7 | 2022 |
A fractional-in-time prey–predator model with hunting cooperation: Qualitative analysis, stability and numerical approximations MF Carfora, I Torcicollo Axioms 10 (2), 78, 2021 | 7 | 2021 |
Kinetic approach to sulphite chemical aggression in porous media G Alì, M Bisi, G Spiga, I Torcicollo International Journal of Non-Linear Mechanics 47 (7), 769-776, 2012 | 7 | 2012 |
On the stability of solutions of the remarkable equation u t= F (x, u)− g (x, u) F Capone, S Rionero, I Torcicollo Supplemento Rendiconti del Circolo Matematico di Palermo, 83–90, 1996 | 6 | 1996 |