Lift3d: Synthesize 3d training data by lifting 2d gan to 3d generative radiance field L Li, Q Lian, L Wang, N Ma, YC Chen Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023 | 10 | 2023 |
Denoising diffusion step-aware models S Yang, Y Chen, L Wang, S Liu, Y Chen arXiv preprint arXiv:2310.03337, 2023 | 6 | 2023 |
Not all steps are created equal: Selective diffusion distillation for image manipulation L Wang, S Yang, S Liu, Y Chen Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023 | 6 | 2023 |
Text-Anchored Score Composition: Tackling condition misalignment in text-to-image diffusion models L Wang, G Shen, W Ge, G Chen, Y Li, Y Chen arXiv preprint arXiv:2306.14408, 2023 | 2* | 2023 |
Motion Inversion for Video Customization L Wang, G Shen, Y Liang, X Tao, P Wan, D Zhang, Y Li, Y Chen arXiv preprint arXiv:2403.20193, 2024 | 1 | 2024 |
SG-Adapter: Enhancing Text-to-Image Generation with Scene Graph Guidance G Shen, L Wang, J Lin, W Ge, C Zhang, X Tao, Y Zhang, P Wan, Z Wang, ... arXiv preprint arXiv:2405.15321, 2024 | | 2024 |
Supplementary Materials for “Lift3D: Synthesize 3D Training Data by Lifting 2D GAN to 3D Generative Radiance Field” L Li, Q Lian, L Wang, N Ma, YC Chen | | |