Biorthogonal systems for solving Volterra integral equation systems of the second kind MI Berenguer, D Gámez, AI Garralda-Guillem, MR Galán, MCS Pérez Journal of Computational and Applied Mathematics 235 (7), 1875-1883, 2011 | 66 | 2011 |
Numerical treatment of fixed point applied to the nonlinear Fredholm integral equation MI Berenguer, MV Fernández Muñoz, AI Garralda Guillem, M Ruiz Galán Fixed Point Theory and Applications 2009, 1-8, 2009 | 46 | 2009 |
Lebesgue property for convex risk measures on Orlicz spaces J Orihuela, M Ruiz Galán Mathematics and Financial Economics 6 (1), 15-35, 2012 | 44 | 2012 |
An approximation method for solving systems of Volterra integro-differential equations MI Berenguer, AI Garralda-Guillem, MR Galán Applied Numerical Mathematics 67, 126-135, 2013 | 39 | 2013 |
High-order nonlinear initial-value problems countably determined D Gámez, AIG Guillem, MR Galán Journal of Computational and Applied Mathematics 228 (1), 77-82, 2009 | 39 | 2009 |
Linear Volterra integro-differential equation and Schauder bases MI Berenguer, MA Fortes, AIG Guillem, MR Galán Applied Mathematics and Computation 159 (2), 495-507, 2004 | 37 | 2004 |
A sequential approach for solving the Fredholm integro-differential equation MI Berenguer, MVF Munoz, AI Garralda-Guillem, MR Galán Applied Numerical Mathematics 62 (4), 297-304, 2012 | 32 | 2012 |
Galerkin method for constrained variational equations and a collage-based approach to related inverse problems MI Berenguer, H Kunze, D La Torre, MR Galán Journal of Computational and Applied Mathematics 292, 67-75, 2016 | 29 | 2016 |
Nonlinear initial-value problems and Schauder bases D Gámez, AIG Guillem, MR Galán Nonlinear Analysis: Theory, Methods & Applications 63 (1), 97-105, 2005 | 28 | 2005 |
Inverse Problems via the “Generalized Collage Theorem” for Vector‐Valued Lax‐Milgram‐Based Variational Problems H Kunze, D La Torre, K Levere, M Ruiz Galán Mathematical Problems in Engineering 2015 (1), 764643, 2015 | 25 | 2015 |
Isomorphisms, Schauder bases in Banach spaces, and numerical solution of integral and differential equations A Palomares, M Ruiz Galán Numerical Functional Analysis and Optimization 26 (1), 129-137, 2005 | 25 | 2005 |
New characterizations of the reflexivity in terms of the set of norm attaining functionals MD Acosta, MR Galán Canadian Mathematical Bulletin 41 (3), 279-289, 1998 | 24 | 1998 |
A coercive James’s weak compactness theorem and nonlinear variational problems J Orihuela, MR Galán Nonlinear Analysis: Theory, Methods & Applications 75 (2), 598-611, 2012 | 23 | 2012 |
An intrinsic notion of convexity for minimax MR Galán Journal of Convex Analysis 21 (4), 1105-1139, 2014 | 22 | 2014 |
A posteriori error analysis of twofold saddle point variational formulations for nonlinear boundary value problems AI Garralda-Guillem, MR Galán, GN Gatica, A Márquez IMA Journal of Numerical Analysis 34 (1), 326-361, 2014 | 22 | 2014 |
Analytical techniques for a numerical solution of the linear Volterra integral equation of the second kind MI Berenguer, D Gámez, AI Garralda-Guillem, M Ruiz Galán, ... Abstract and Applied Analysis 2009 (1), 149367, 2009 | 22 | 2009 |
A new minimax theorem and a perturbed James's theorem MR Galán, S Simons Bulletin of the Australian Mathematical Society 66 (1), 43-56, 2002 | 21 | 2002 |
A version of the Lax–Milgram theorem for locally convex spaces MR Galán J. Convex Anal 16, 993-1002, 2009 | 20 | 2009 |
The Gordan theorem and its implications for minimax theory MR Galán J. Nonlinear Convex Anal 17, 2385-2405, 2016 | 18 | 2016 |
Optimal control: theory and application to science, engineering, and social sciences D La Torre, H Kunze, M Ruiz-Galan, T Malik, S Marsiglio Abstract and applied analysis 2015, 2015 | 17 | 2015 |