GT-Scan: identifying unique genomic targets A O'Brien, TL Bailey Bioinformatics, 2673-2675, 2014 | 156 | 2014 |
The current state and future of CRISPR-Cas9 gRNA design tools LOW Wilson, AR O’Brien, DC Bauer Frontiers in pharmacology 9, 749, 2018 | 133 | 2018 |
Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation CB Gurumurthy, AR O’brien, RM Quadros, J Adams, P Alcaide, S Ayabe, ... Genome biology 20 (1), 1-14, 2019 | 88 | 2019 |
High activity target-site identification using phenotypic independent CRISPR-Cas9 core functionality LOW Wilson, D Reti, AR O'Brien, RA Dunne, DC Bauer The CRISPR Journal 1 (2), 182-190, 2018 | 50 | 2018 |
Artificial intelligence and machine learning in bioinformatics K Lai, N Twine, A O’brien, Y Guo, D Bauer Encyclopedia of Bioinformatics and Computational Biology: ABC of …, 2018 | 48 | 2018 |
Unlocking HDR-mediated nucleotide editing by identifying high-efficiency target sites using machine learning AR o’Brien, LOW Wilson, G Burgio, DC Bauer Scientific reports 9 (1), 2788, 2019 | 39 | 2019 |
VariantSpark: population scale clustering of genotype information AR O’Brien, NFW Saunders, Y Guo, FA Buske, RJ Scott, DC Bauer BMC genomics 16 (1), 1-9, 2015 | 36 | 2015 |
Mutation analysis of MATR3 in Australian familial amyotrophic lateral sclerosis JA Fifita, KL Williams, EP McCann, A O'Brien, DC Bauer, GA Nicholson, ... Neurobiology of aging 36 (3), 1602.e1-1602.e2, 2015 | 19 | 2015 |
Domain-specific introduction to machine learning terminology, pitfalls and opportunities in CRISPR-based gene editing AR O’Brien, G Burgio, DC Bauer Briefings in bioinformatics 22 (1), 308-314, 2021 | 15 | 2021 |
VariantSpark: Cloud-based machine learning for association study of complex phenotype and large-scale genomic data A Bayat, P Szul, AR O’Brien, R Dunne, B Hosking, Y Jain, C Hosking, ... GigaScience 9 (8), giaa077, 2020 | 13 | 2020 |
The current state and future of CRISPR-Cas9 gRNA design tools. Front Pharmacol 9: 749 LOW Wilson, AR O’Brien, DC Bauer | 6 | 2018 |
Response to correspondence on “Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation” CB Gurumurthy, AR O’Brien, RM Quadros, J Adams, P Alcaide, S Ayabe, ... Genome biology 22, 1-4, 2021 | 3 | 2021 |
VariantSpark, A Random Forest Machine Learning Implementation for Ultra High Dimensional Data A Bayat, P Szul, AR O’Brien, R Dunne, OJ Luo, Y Jain, B Hosking, ... bioRxiv, 702902, 2019 | 3 | 2019 |
Breaking the curse of dimensionality for machine learning on genomic data A O’Brien, P Szul, O Luo, A George, R Dunne, D Bauer IJCAI 2017, 2017 | 3 | 2017 |
GOANA: A Universal High-Throughput Web Service for Assessing and Comparing the Outcome and Efficiency of Genome Editing Experiments D Reti, A O'Brien, P Wetzel, A Tay, DC Bauer, LOW Wilson The CRISPR Journal 4 (2), 243-252, 2021 | 2 | 2021 |
Predicting CRISPR-Cas12a guide efficiency for targeting using machine learning A O’Brien, DC Bauer, G Burgio Plos one 18 (10), e0292924, 2023 | 1 | 2023 |
Generalisable Methods for Improving CRISPR Efficiency and Outcome Specificity using Machine Learning Algorithms AR O'Brien PQDT-Global, 2020 | 1 | 2020 |
Uncovering the functional variants and target genes of the 7q32 pancreatic cancer risk locus A O'Brien, JW Hoskins, DR Eiser, KE Connelly, J Zhong, T Andresson, ... Cancer Research 82 (12_Supplement), 1475-1475, 2022 | | 2022 |
Defining and evaluating an operational definition of potentially preventable hospital readmission A O'Brien Macquarie University, 2017 | | 2017 |
VariantSpark: Applying Spark-based machine learning methods to genomic information AR O'Brien, DC Bauer BigData 2015, 2015 | | 2015 |