Highly accurate protein structure prediction with AlphaFold J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, ... Nature 596 (7873), 583-589, 2021 | 24835 | 2021 |
Continuous control with deep reinforcement learning TP Lillicrap, JJ Hunt, A Pritzel, N Heess, T Erez, Y Tassa, D Silver, ... arXiv preprint arXiv:1509.02971, 2015 | 16661 | 2015 |
Simple and scalable predictive uncertainty estimation using deep ensembles B Lakshminarayanan, A Pritzel, C Blundell Advances in neural information processing systems 30, 2017 | 5888 | 2017 |
Highly accurate protein structure prediction for the human proteome K Tunyasuvunakool, J Adler, Z Wu, T Green, M Zielinski, A Žídek, ... Nature 596 (7873), 590-596, 2021 | 2165 | 2021 |
Protein complex prediction with AlphaFold-Multimer R Evans, M O’Neill, A Pritzel, N Antropova, A Senior, T Green, A Žídek, ... biorxiv, 2021.10. 04.463034, 2021 | 1935 | 2021 |
Deep exploration via bootstrapped DQN I Osband, C Blundell, A Pritzel, B Van Roy Advances in neural information processing systems 29, 2016 | 1468 | 2016 |
Gemini: a family of highly capable multimodal models G Team, R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, ... arXiv preprint arXiv:2312.11805, 2023 | 999 | 2023 |
Pathnet: Evolution channels gradient descent in super neural networks C Fernando, D Banarse, C Blundell, Y Zwols, D Ha, AA Rusu, A Pritzel, ... arXiv preprint arXiv:1701.08734, 2017 | 967 | 2017 |
Vector-based navigation using grid-like representations in artificial agents A Banino, C Barry, B Uria, C Blundell, T Lillicrap, P Mirowski, A Pritzel, ... Nature 557 (7705), 429-433, 2018 | 719 | 2018 |
Darla: Improving zero-shot transfer in reinforcement learning I Higgins, A Pal, A Rusu, L Matthey, C Burgess, A Pritzel, M Botvinick, ... International Conference on Machine Learning, 1480-1490, 2017 | 499 | 2017 |
Learning skillful medium-range global weather forecasting R Lam, A Sanchez-Gonzalez, M Willson, P Wirnsberger, M Fortunato, ... Science 382 (6677), 1416-1421, 2023 | 433* | 2023 |
Neural episodic control A Pritzel, B Uria, S Srinivasan, AP Badia, O Vinyals, D Hassabis, ... International conference on machine learning, 2827-2836, 2017 | 412 | 2017 |
Applying and improving AlphaFold at CASP14 J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, ... Proteins: Structure, Function, and Bioinformatics 89 (12), 1711-1721, 2021 | 363* | 2021 |
Accurate proteome-wide missense variant effect prediction with AlphaMissense J Cheng, G Novati, J Pan, C Bycroft, A Žemgulytė, T Applebaum, A Pritzel, ... Science 381 (6664), eadg7492, 2023 | 355 | 2023 |
Never give up: Learning directed exploration strategies AP Badia, P Sprechmann, A Vitvitskyi, D Guo, B Piot, S Kapturowski, ... arXiv preprint arXiv:2002.06038, 2020 | 335 | 2020 |
Model-free episodic control C Blundell, B Uria, A Pritzel, Y Li, A Ruderman, JZ Leibo, J Rae, ... arXiv preprint arXiv:1606.04460, 2016 | 296 | 2016 |
Accurate structure prediction of biomolecular interactions with AlphaFold 3 J Abramson, J Adler, J Dunger, R Evans, T Green, A Pritzel, ... Nature, 1-3, 2024 | 238 | 2024 |
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context M Reid, N Savinov, D Teplyashin, D Lepikhin, T Lillicrap, J Alayrac, ... arXiv preprint arXiv:2403.05530, 2024 | 183 | 2024 |
Scrambling in the black hole portrait G Dvali, D Flassig, C Gomez, A Pritzel, N Wintergerst Physical Review D 88 (12), 124041, 2013 | 117 | 2013 |
Memory-based parameter adaptation P Sprechmann, SM Jayakumar, JW Rae, A Pritzel, AP Badia, B Uria, ... arXiv preprint arXiv:1802.10542, 2018 | 112 | 2018 |