ALICE: Physics performance report, volume I F Carminati, P Foka, P Giubellino, A Morsch, G Paic, JP Revol, K Safarik, ... Journal of Physics G: Nuclear and Particle Physics 30 (11), 1517, 2004 | 462 | 2004 |
Six networks on a universal neuromorphic computing substrate T Pfeil, A Grübl, S Jeltsch, E Müller, P Müller, MA Petrovici, M Schmuker, ... Frontiers in Neuroscience 7, 11, 2013 | 222 | 2013 |
Neuromorphic hardware in the loop: Training a deep spiking network on the brainscales wafer-scale system S Schmitt, J Klähn, G Bellec, A Grübl, M Guettler, A Hartel, S Hartmann, ... 2017 international joint conference on neural networks (IJCNN), 2227-2234, 2017 | 204 | 2017 |
A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems D Brüderle, MA Petrovici, B Vogginger, M Ehrlich, T Pfeil, S Millner, ... Biological cybernetics 104, 263-296, 2011 | 145 | 2011 |
Demonstrating advantages of neuromorphic computation: a pilot study T Wunderlich, AF Kungl, E Müller, A Hartel, Y Stradmann, SA Aamir, ... Frontiers in neuroscience 13, 260, 2019 | 142 | 2019 |
Fast and energy-efficient neuromorphic deep learning with first-spike times J Göltz, L Kriener, A Baumbach, S Billaudelle, O Breitwieser, B Cramer, ... Nature machine intelligence 3 (9), 823-835, 2021 | 110* | 2021 |
ALICE: Physics performance report, volume I P Cortese, G Dellacasa, L Ramello, M Sitta, S Ahmad, W Bari, M Irfan, ... Journal of Physics G: Nuclear and Particle Physics 30 (11), 2004 | 78 | 2004 |
Characterization and compensation of network-level anomalies in mixed-signal neuromorphic modeling platforms MA Petrovici, B Vogginger, P Müller, O Breitwieser, M Lundqvist, L Muller, ... PloS one 9 (10), e108590, 2014 | 77 | 2014 |
Stochastic inference with spiking neurons in the high-conductance state MA Petrovici, J Bill, I Bytschok, J Schemmel, K Meier Physical Review E 94 (4), 042312, 2016 | 73 | 2016 |
Visualizing a joint future of neuroscience and neuromorphic engineering F Zenke, SM Bohté, C Clopath, IM Comşa, J Göltz, W Maass, ... Neuron 109 (4), 571-575, 2021 | 70 | 2021 |
Versatile emulation of spiking neural networks on an accelerated neuromorphic substrate S Billaudelle, Y Stradmann, K Schreiber, B Cramer, A Baumbach, D Dold, ... 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 1-5, 2020 | 54 | 2020 |
Stochastic inference with deterministic spiking neurons MA Petrovici, J Bill, I Bytschok, J Schemmel, K Meier arXiv preprint arXiv:1311.3211, 2013 | 47 | 2013 |
Spiking neurons with short-term synaptic plasticity form superior generative networks L Leng, R Martel, O Breitwieser, I Bytschok, W Senn, J Schemmel, K Meier, ... Scientific Reports 8 (1), 10651, 2018 | 44* | 2018 |
Evolving interpretable plasticity for spiking networks J Jordan, M Schmidt, W Senn, MA Petrovici Elife 10, e66273, 2021 | 41 | 2021 |
Accelerated physical emulation of bayesian inference in spiking neural networks AF Kungl, S Schmitt, J Klähn, P Müller, A Baumbach, D Dold, A Kugele, ... Frontiers in neuroscience 13, 1201, 2019 | 40 | 2019 |
Fast and deep neuromorphic learning with first-spike coding J Göltz, A Baumbach, S Billaudelle, AF Kungl, O Breitwieser, K Meier, ... Proceedings of the 2020 Annual Neuro-Inspired Computational Elements …, 2020 | 39 | 2020 |
Form versus function: theory and models for neuronal substrates MA Petrovici Springer International Publishing, 2016 | 38* | 2016 |
Predictive olfactory learning in Drosophila C Zhao, YF Widmer, S Diegelmann, MA Petrovici, SG Sprecher, W Senn Scientific reports 11 (1), 6795, 2021 | 33 | 2021 |
Stochasticity from function—why the bayesian brain may need no noise D Dold, I Bytschok, AF Kungl, A Baumbach, O Breitwieser, W Senn, ... Neural networks 119, 200-213, 2019 | 33* | 2019 |
Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons D Probst, MA Petrovici, I Bytschok, J Bill, D Pecevski, J Schemmel, ... Frontiers in Computational Neuroscience 9, 13, 2015 | 33 | 2015 |