Stack overflow considered harmful? the impact of copy&paste on android application security F Fischer, K Böttinger, H Xiao, C Stransky, Y Acar, M Backes, S Fahl 2017 IEEE symposium on security and privacy (SP), 121-136, 2017 | 357 | 2017 |
Deep reinforcement fuzzing K Böttinger, P Godefroid, R Singh 2018 IEEE Security and Privacy Workshops (SPW), 116-122, 2018 | 127 | 2018 |
High-performance unsupervised anomaly detection for cyber-physical system networks P Schneider, K Böttinger Proceedings of the 2018 workshop on cyber-physical systems security and …, 2018 | 93 | 2018 |
Does audio deepfake detection generalize? NM Müller, P Czempin, F Dieckmann, A Froghyar, K Böttinger arXiv preprint arXiv:2203.16263, 2022 | 90 | 2022 |
A collaborative cyber incident management system for European interconnected critical infrastructures G Settanni, F Skopik, Y Shovgenya, R Fiedler, M Carolan, D Conroy, ... Journal of Information Security and Applications 34, 166-182, 2017 | 70 | 2017 |
Speech is silver, silence is golden: What do ASVspoof-trained models really learn? NM Müller, F Dieckmann, P Czempin, R Canals, K Böttinger, J Williams arXiv preprint arXiv:2106.12914, 2021 | 57 | 2021 |
Human perception of audio deepfakes NM Müller, K Pizzi, J Williams Proceedings of the 1st International Workshop on Deepfake Detection for …, 2022 | 52 | 2022 |
DLA: dense-layer-analysis for adversarial example detection P Sperl, CY Kao, P Chen, X Lei, K Böttinger 2020 IEEE European Symposium on Security and Privacy (EuroS&P), 198-215, 2020 | 49 | 2020 |
Stack Overflow Considered Helpful! Deep Learning Security Nudges Towards Stronger Cryptography F Fischer, H Xiao, CY Kao, Y Stachelscheid, B Johnson, D Raza, ... | 44 | 2019 |
Deepfuzz: Triggering vulnerabilities deeply hidden in binaries K Böttinger, C Eckert Detection of Intrusions and Malware, and Vulnerability Assessment: 13th …, 2016 | 41 | 2016 |
Deutsche Normungsroadmap Künstliche Intelligenz R Adler, A Bunte, S Burton, J Großmann, A Jaschke, P Kleen, JM Lorenz, ... DIN, 2022 | 26 | 2022 |
Data poisoning attacks on regression learning and corresponding defenses N Müller, D Kowatsch, K Böttinger 2020 IEEE 25th Pacific Rim International Symposium on Dependable Computing …, 2020 | 21 | 2020 |
Gradient masking and the underestimated robustness threats of differential privacy in deep learning F Boenisch, P Sperl, K Böttinger arXiv preprint arXiv:2105.07985, 2021 | 20 | 2021 |
On GDPR Compliance of Companies’ Privacy Policies K Böttinger Text, Speech, and Dialogue: 22nd International Conference, TSD 2019 …, 2019 | 18* | 2019 |
A unified architecture for industrial IoT security requirements in open platform communications G Hansch, P Schneider, K Fischer, K Böttinger 2019 24th ieee international conference on emerging technologies and factory …, 2019 | 17 | 2019 |
Distributed Anomaly Detection of Single Mote Attacks in RPL Networks. NM Müller, P Debus, D Kowatsch, K Böttinger ICETE (2), 378-385, 2019 | 17 | 2019 |
Activation anomaly analysis P Sperl, JP Schulze, K Böttinger Joint European Conference on Machine Learning and Knowledge Discovery in …, 2020 | 16 | 2020 |
Detecting fingerprinted data in TLS traffic K Böttinger, D Schuster, C Eckert Proceedings of the 10th ACM Symposium on Information, Computer and …, 2015 | 12 | 2015 |
Side-channel aware fuzzing P Sperl, K Böttinger Computer Security–ESORICS 2019: 24th European Symposium on Research in …, 2019 | 11 | 2019 |
Deep reinforcement fuzzing. In 2018 IEEE Security and Privacy Workshops (SPW), 116–122 K Böttinger, P Godefroid, R Singh IEEE, San Francisco, CA, USA: IEEE, 2018 | 9 | 2018 |