Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation M Krenn, F Häse, AK Nigam, P Friederich, A Aspuru-Guzik Machine Learning: Science and Technology 1 (4), 045024, 2020 | 737 | 2020 |
Self-driving laboratory for accelerated discovery of thin-film materials BP MacLeod, FGL Parlane, TD Morrissey, F Häse, LM Roch, ... Science Advances 6 (20), eaaz8867, 2020 | 472 | 2020 |
Machine-learned potentials for next-generation matter simulations P Friederich, F Häse, J Proppe, A Aspuru-Guzik Nature Materials 20 (6), 750-761, 2021 | 323 | 2021 |
Phoenics: a Bayesian optimizer for chemistry F Hase, LM Roch, C Kreisbeck, A Aspuru-Guzik ACS central science 4 (9), 1134-1145, 2018 | 313 | 2018 |
Next-generation experimentation with self-driving laboratories F Häse, LM Roch, A Aspuru-Guzik Trends in Chemistry 1 (3), 282-291, 2019 | 260 | 2019 |
Beyond Ternary OPV: High‐Throughput Experimentation and Self‐Driving Laboratories Optimize Multicomponent Systems S Langner, F Häse, JD Perea, T Stubhan, J Hauch, LM Roch, ... Advanced Materials 32 (14), 1907801, 2020 | 222 | 2020 |
On scientific understanding with artificial intelligence M Krenn, R Pollice, SY Guo, M Aldeghi, A Cervera-Lierta, P Friederich, ... Nature Reviews Physics 4 (12), 761-769, 2022 | 172 | 2022 |
Data-science driven autonomous process optimization M Christensen, LPE Yunker, F Adedeji, F Häse, LM Roch, T Gensch, ... Communications Chemistry 4 (1), 112, 2021 | 157 | 2021 |
ChemOS: orchestrating autonomous experimentation LM Roch, F Häse, C Kreisbeck, T Tamayo-Mendoza, LPE Yunker, ... Science Robotics 3 (19), eaat5559, 2018 | 156 | 2018 |
Machine learning exciton dynamics F Häse, S Valleau, E Pyzer-Knapp, A Aspuru-Guzik Chemical Science 7 (8), 5139-5147, 2016 | 147 | 2016 |
Machine learning directed drug formulation development P Bannigan, M Aldeghi, Z Bao, F Häse, A Aspuru-Guzik, C Allen Advanced Drug Delivery Reviews 175, 113806, 2021 | 146 | 2021 |
ChemOS: An orchestration software to democratize autonomous discovery LM Roch, F Häse, A Aspuru-Guzik | 143 | 2020 |
Chimera: enabling hierarchy based multi-objective optimization for self-driving laboratories F Häse, LM Roch, A Aspuru-Guzik Chemical science 9 (39), 7642-7655, 2018 | 138 | 2018 |
Gryffin: An algorithm for Bayesian optimization of categorical variables informed by expert knowledge F Häse, M Aldeghi, RJ Hickman, LM Roch, A Aspuru-Guzik Applied Physics Reviews 8 (3), 2021 | 134* | 2021 |
How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry F Häse, IF Galván, A Aspuru-Guzik, R Lindh, M Vacher Chemical science 10 (8), 2298-2307, 2019 | 106 | 2019 |
Machine learning for quantum dynamics: deep learning of excitation energy transfer properties F Häse, C Kreisbeck, A Aspuru-Guzik Chemical science 8 (12), 8419-8426, 2017 | 89 | 2017 |
Olympus: a benchmarking framework for noisy optimization and experiment planning F Häse, M Aldeghi, RJ Hickman, LM Roch, M Christensen, E Liles, ... Machine Learning: Science and Technology 2 (3), 035021, 2021 | 80 | 2021 |
Designing and understanding light-harvesting devices with machine learning F Häse, LM Roch, P Friederich, A Aspuru-Guzik Nature Communications 11 (1), 4587, 2020 | 73 | 2020 |
Machine learning models to accelerate the design of polymeric long-acting injectables P Bannigan, Z Bao, RJ Hickman, M Aldeghi, F Häse, A Aspuru-Guzik, ... Nature communications 14 (1), 35, 2023 | 63 | 2023 |
Free energy analysis and mechanism of base pair stacking in nicked DNA F Häse, M Zacharias Nucleic acids research 44 (15), 7100-7108, 2016 | 63 | 2016 |