关注
Andreanne Lemay
Andreanne Lemay
M.Sc. candidate, Polytechnique Montreal
在 polymtl.ca 的电子邮件经过验证
标题
引用次数
引用次数
年份
SoftSeg: Advantages of soft versus binary training for image segmentation
C Gros, A Lemay, J Cohen-Adad
Medical image analysis 71, 102038, 2021
702021
Fair conformal predictors for applications in medical imaging
C Lu, A Lemay, K Chang, K Höbel, J Kalpathy-Cramer
Proceedings of the AAAI Conference on Artificial Intelligence 36 (11), 12008 …, 2022
672022
Automatic multiclass intramedullary spinal cord tumor segmentation on MRI with deep learning
A Lemay, C Gros, Z Zhuo, J Zhang, Y Duan, J Cohen-Adad, Y Liu
NeuroImage: Clinical 31, 102766, 2021
422021
Improving the repeatability of deep learning models with Monte Carlo dropout
A Lemay, K Hoebel, CP Bridge, B Befano, S De Sanjosé, D Egemen, ...
npj Digital Medicine 5 (1), 174, 2022
332022
Artificial intelligence–based image analysis in clinical testing: lessons from cervical cancer screening
D Egemen, RB Perkins, LC Cheung, B Befano, AC Rodriguez, K Desai, ...
JNCI: Journal of the National Cancer Institute 116 (1), 26-33, 2024
242024
Kidney recognition in CT using YOLOv3
A Lemay
arXiv preprint arXiv:1910.01268, 2019
232019
Ivadomed: A medical imaging deep learning toolbox
C Gros, A Lemay, O Vincent, L Rouhier, A Bucquet, JP Cohen, ...
arXiv preprint arXiv:2010.09984, 2020
202020
Reproducible and clinically translatable deep neural networks for cervical screening
SR Ahmed, B Befano, A Lemay, D Egemen, AC Rodriguez, S Angara, ...
Scientific reports 13 (1), 21772, 2023
172023
Label fusion and training methods for reliable representation of inter-rater uncertainty
A Lemay, C Gros, EN Karthik, J Cohen-Adad
arXiv preprint arXiv:2202.07550, 2022
122022
Evaluating subgroup disparity using epistemic uncertainty in mammography
C Lu, A Lemay, K Hoebel, J Kalpathy-Cramer
arXiv preprint arXiv:2107.02716, 2021
122021
Focal loss improves repeatability of deep learning models
SR Ahmed, A Lemay, KV Hoebel, J Kalpathy-Cramer
Medical Imaging with Deep Learning, 2022
92022
Benefits of linear conditioning for segmentation using metadata
A Lemay, C Gros, O Vincent, Y Liu, JP Cohen, J Cohen-Adad
Medical Imaging with Deep Learning, 416-430, 2021
62021
Reproducible and clinically translatable deep neural networks for cancer screening
SR Ahmed, B Befano, A Lemay, D Egemen, AC Rodriguez, S Angara, ...
Research Square, 2023
52023
Benefits of linear conditioning with metadata for image segmentation
A Lemay, C Gros, O Vincent, Y Liu, JP Cohen, J Cohen-Adad
arXiv preprint arXiv:2102.09582, 2021
52021
Do I know this? segmentation uncertainty under domain shift
K Hoebel, C Bridge, A Lemay, K Chang, J Patel, B Rosen, ...
Medical Imaging 2022: Image Processing 12032, 261-276, 2022
42022
Proceedings of the AAAI Conference on Artificial Intelligence
C Lu, A Lemay, K Chang, K Höbel, J Kalpathy‐Cramer
AAAI Press 36 (1), 1872-1880, 2022
42022
Team neuropoly: description of the pipelines for the MICCAI 2021 MS new lesions segmentation challenge
U Macar, EN Karthik, C Gros, A Lemay, J Cohen-Adad
arXiv preprint arXiv:2109.05409, 2021
22021
Monte Carlo dropout increases model repeatability
A Lemay, K Hoebel, CP Bridge, D Egemen, AC Rodriguez, M Schiffman, ...
arXiv preprint arXiv:2111.06754, 2021
12021
Monte Carlo dropout for increased deep learning repeatability and disease classification performance in retinopathy of prematurity
AS Coyner, A Lemay, K Hoebel, P Singh, S Ostmo, MF Chiang, ...
Investigative Ophthalmology & Visual Science 64 (8), 5124-5124, 2023
2023
A generalized framework to predict continuous scores from medical ordinal labels
KV Hoebel, A Lemay, JP Campbell, S Ostmo, MF Chiang, CP Bridge, ...
arXiv preprint arXiv:2305.19097, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–20