关注
Yi He
Yi He
University of Chicago
在 weride.ai 的电子邮件经过验证
标题
引用次数
引用次数
年份
Fidelity: Efficient resilience analysis framework for deep learning accelerators
Y He, P Balaprakash, Y Li
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture …, 2020
602020
Special session: on the reliability of conventional and quantum neural network hardware
M Sadi, Y He, Y Li, M Alam, S Kundu, S Ghosh, J Bahrami, N Karimi
2022 IEEE 40th VLSI Test Symposium (VTS), 1-12, 2022
282022
Efficient functional in-field self-test for deep learning accelerators
Y He, T Uezono, Y Li
2021 IEEE International Test Conference (ITC), 93-102, 2021
182021
Understanding and mitigating hardware failures in deep learning training systems
Y He, M Hutton, S Chan, R De Gruijl, R Govindaraju, N Patil, Y Li
Proceedings of the 50th Annual International Symposium on Computer …, 2023
112023
Achieving automotive safety requirements through functional in-field self-test for deep learning accelerators
T Uezono, Y He, Y Li
2022 IEEE International Test Conference (ITC), 465-473, 2022
52022
Time-slicing soft error resilience in microprocessors for reliable and energy-efficient execution
Y He, Y Li
2019 IEEE International Test Conference (ITC), 1-10, 2019
32019
Understanding Permanent Hardware Failures in Deep Learning Training Accelerator Systems
Y He, Y Li
2023 IEEE European Test Symposium (ETS), 1-6, 2023
12023
Resilient Deep Learning Accelerators
Y He
The University of Chicago, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–8