A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems OA Karakashian, F Pascal SIAM Journal on Numerical Analysis 41 (6), 2374-2399, 2003 | 525 | 2003 |
On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation GD Akrivis, VA Dougalis, OA Karakashian Numerische Mathematik 59, 31-53, 1991 | 294 | 1991 |
Conservative, high-order numerical schemes for the generalized Korteweg—de Vries equation JL Bona, VA Dougalis, OA Karakashian, WR McKinney Philosophical Transactions of the Royal Society of London. Series A …, 1995 | 206 | 1995 |
A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method O Karakashian, C Makridakis Mathematics of computation 67 (222), 479-499, 1998 | 193 | 1998 |
Piecewise solenoidal vector fields and the Stokes problem GA Baker, WN Jureidini, OA Karakashian SIAM journal on numerical analysis 27 (6), 1466-1485, 1990 | 185 | 1990 |
Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems X Feng, OA Karakashian SIAM Journal on Numerical Analysis 39 (4), 1343-1365, 2001 | 167 | 2001 |
Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems OA Karakashian, F Pascal SIAM Journal on Numerical Analysis 45 (2), 641-665, 2007 | 153 | 2007 |
A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method O Karakashian, C Makridakis SIAM journal on numerical analysis 36 (6), 1779-1807, 1999 | 140 | 1999 |
A nonconforming finite element method for the stationary Navier--Stokes equations OA Karakashian, WN Jureidini SIAM journal on numerical analysis 35 (1), 93-120, 1998 | 138 | 1998 |
Conservative, discontinuous Galerkin–methods for the generalized Korteweg–de Vries equation J Bona, H Chen, O Karakashian, Y Xing Mathematics of Computation 82 (283), 1401-1432, 2013 | 136 | 2013 |
On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations GA Baker, VA Dougalis, OA Karakashian mathematics of computation 39 (160), 339-375, 1982 | 135 | 1982 |
On optimal order error estimates for the nonlinear Schrödinger equation O Karakashian, GD Akrivis, VA Dougalis SIAM journal on numerical analysis 30 (2), 377-400, 1993 | 103 | 1993 |
Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition X Feng, O Karakashian Mathematics of computation 76 (259), 1093-1117, 2007 | 101 | 2007 |
Fully discrete Galerkin methods for the Korteweg-de Vries equation JL Bona, VA Dougalis, OA Karakashian Computers & Mathematics with Applications 12 (7), 859-884, 1986 | 95 | 1986 |
On a Galerkin–Lagrange multiplier method for the stationary Navier–Stokes equations OA Karakashian SIAM Journal on Numerical Analysis 19 (5), 909-923, 1982 | 92 | 1982 |
A MIXED DISCONTINUOUS GALERKIN, CONVEX SPLITTING SCHEME FOR A MODIFIED CAHN-HILLIARD EQUATION AND AN EFFICIENT NONLINEAR MULTIGRID SOLVER. AC Aristotelous, O Karakashian, SM Wise Discrete & Continuous Dynamical Systems-Series B 18 (9), 2013 | 91 | 2013 |
Convergence of Galerkin approximations for the Korteweg-de Vries equation GA Baker, VA Dougalis, OA Karakashian Mathematics of Computation 40 (162), 419-433, 1983 | 85 | 1983 |
Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn–Hilliard equation with a mass source AC Aristotelous, OA Karakashian, SM Wise IMA Journal of Numerical Analysis 35 (3), 1167-1198, 2015 | 66 | 2015 |
Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation GD Akrivis, VA Dougalis, OA Karakashian, WR McKinney SIAM Journal on Scientific Computing 25 (1), 186-212, 2003 | 58 | 2003 |
On some high-order accurate fully discrete Galerkin methods for the Korteweg-de Vries equation VA Dougalis, OA Karakashian mathematics of computation 45 (172), 329-345, 1985 | 56 | 1985 |