Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia M Dewey, M Siebes, M Kachelrieß, KF Kofoed, P Maurovich-Horvat, ... Nature Reviews Cardiology 17 (7), 427-450, 2020 | 149 | 2020 |
Spatio-temporal deep learning-based undersampling artefact reduction for 2D radial cine MRI with limited training data A Kofler, M Dewey, T Schaeffter, C Wald, C Kolbitsch IEEE transactions on medical imaging 39 (3), 703-717, 2019 | 83 | 2019 |
A U-Nets cascade for sparse view computed tomography A Kofler, M Haltmeier, C Kolbitsch, M Kachelrieß, M Dewey Machine Learning for Medical Image Reconstruction: First International …, 2018 | 48 | 2018 |
Neural networks-based regularization for large-scale medical image reconstruction A Kofler, M Haltmeier, T Schaeffter, M Kachelrieß, M Dewey, C Wald, ... Physics in Medicine & Biology 65 (13), 135003, 2020 | 41 | 2020 |
An end‐to‐end‐trainable iterative network architecture for accelerated radial multi‐coil 2D cine MR image reconstruction A Kofler, M Haltmeier, T Schaeffter, C Kolbitsch Medical Physics 48 (5), 2412-2425, 2021 | 27 | 2021 |
Adaptive sparsity level and dictionary size estimation for image reconstruction in accelerated 2D radial cine MRI MC Pali, T Schaeffter, C Kolbitsch, A Kofler Medical Physics 48 (1), 178-192, 2021 | 13 | 2021 |
Learning regularization parameter-maps for variational image reconstruction using deep neural networks and algorithm unrolling A Kofler, F Altekrüger, F Antarou Ba, C Kolbitsch, E Papoutsellis, D Schote, ... SIAM Journal on Imaging Sciences 16 (4), 2202-2246, 2023 | 7 | 2023 |
Deep supervised dictionary learning by algorithm unrolling—Application to fast 2D dynamic MR image reconstruction A Kofler, MC Pali, T Schaeffter, C Kolbitsch Medical Physics 50 (5), 2939-2960, 2023 | 5 | 2023 |
3D model-based super-resolution motion-corrected cardiac T1 mapping S Hufnagel, S Metzner, KM Kerkering, CS Aigner, A Kofler, ... Physics in Medicine & Biology 67 (24), 245008, 2022 | 5 | 2022 |
PINQI: an end-to-end physics-informed approach to learned quantitative MRI reconstruction FF Zimmermann, C Kolbitsch, P Schuenke, A Kofler IEEE Transactions on Computational Imaging, 2024 | 3 | 2024 |
Convolutional Dictionary Learning by End-To-End Training of Iterative Neural Networks A Kofler, C Wald, T Schaeffter, M Haltmeier, C Kolbitsch 2022 30th European Signal Processing Conference (EUSIPCO), 1213-1217, 2022 | 3 | 2022 |
Convolutional analysis operator learning by end-to-end training of iterative neural networks A Kofler, C Wald, T Schaeffter, M Haltmeier, C Kolbitsch 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 1-5, 2022 | 3 | 2022 |
The more the merrier?—On the number of trainable parameters in iterative neural networks for image reconstruction A Kofler, T Schaeffter, C Kolbitsch Proceedings of the Joint Annual meeting of ISMRM-ESMRMB and SMRT 31st Annual …, 2022 | 3 | 2022 |
A splitting/polynomial chaos expansion approach for stochastic evolution equations A Kofler, T Levajković, H Mena, A Ostermann Journal of Evolution Equations 21 (2), 1345-1381, 2021 | 3 | 2021 |
Ground-truth-free deep learning for artefacts reduction in 2D radial cardiac cine MRI using a synthetically generated dataset D Chen, T Schaeffter, C Kolbitsch, A Kofler Physics in Medicine & Biology 66 (9), 095005, 2021 | 3 | 2021 |
NoSENSE: Learned unrolled cardiac MRI reconstruction without explicit sensitivity maps FF Zimmermann, A Kofler International Workshop on Statistical Atlases and Computational Models of …, 2023 | 2 | 2023 |
Quantitative MR Image Reconstruction using Parameter-Specific Dictionary Learning with Adaptive Dictionary-Size and Sparsity-Level Choice A Kofler, KM Kerkering, L Göschel, A Fillmer, C Kolbitsch IEEE Transactions on Biomedical Engineering, 2023 | 2 | 2023 |
Data‐efficient Bayesian learning for radial dynamic MR reconstruction S Brahma, C Kolbitsch, J Martin, T Schaeffter, A Kofler Medical Physics 50 (11), 6955-6977, 2023 | 1 | 2023 |
Deep learning-based methods for image reconstruction in cardiac CT and cardiac cine MRI A Kofler | 1 | 2021 |
Splitting methods for stochastic partial differential equations A Kofler, H Mena, A Ostermann 9th NAI Workshop on Numerical Analysis of Evolution Equations, 25, 2016 | 1 | 2016 |