Generalized relevance learning vector quantization B Hammer, T Villmann Neural Networks 15 (8-9), 1059-1068, 2002 | 570 | 2002 |
Topology preservation in self-organizing feature maps: exact definition and measurement T Villmann, R Der, M Herrmann, TM Martinetz IEEE transactions on neural networks 8 (2), 256-266, 1997 | 435 | 1997 |
Neural maps in remote sensing image analysis T Villmann, E Merényi, B Hammer Neural Networks 16 (3-4), 389-403, 2003 | 234 | 2003 |
Serotonin and dopamine transporter imaging in patients with obsessive–compulsive disorder S Hesse, U Müller, T Lincke, H Barthel, T Villmann, MC Angermeyer, ... Psychiatry Research: Neuroimaging 140 (1), 63-72, 2005 | 205 | 2005 |
Growing a hypercubical output space in a self-organizing feature map HU Bauer, T Villmann IEEE transactions on neural networks 8 (2), 218-226, 1997 | 201 | 1997 |
Batch and median neural gas M Cottrell, B Hammer, A Hasenfuß, T Villmann Neural Networks 19 (6-7), 762-771, 2006 | 196 | 2006 |
Supervised neural gas with general similarity measure B Hammer, M Strickert, T Villmann Neural Processing Letters 21, 21-44, 2005 | 195 | 2005 |
Prototype‐based models in machine learning M Biehl, B Hammer, T Villmann Wiley Interdisciplinary Reviews: Cognitive Science 7 (2), 92-111, 2016 | 175 | 2016 |
Limited rank matrix learning, discriminative dimension reduction and visualization K Bunte, P Schneider, B Hammer, FM Schleif, T Villmann, M Biehl Neural Networks 26, 159-173, 2012 | 149 | 2012 |
Neural maps and topographic vector quantization HU Bauer, M Herrmann, T Villmann Neural networks 12 (4-5), 659-676, 1999 | 141 | 1999 |
Stochastic neighbor embedding (SNE) for dimension reduction and visualization using arbitrary divergences K Bunte, S Haase, M Biehl, T Villmann Neurocomputing 90, 23-45, 2012 | 123 | 2012 |
Regularization in matrix relevance learning P Schneider, K Bunte, H Stiekema, B Hammer, T Villmann, M Biehl IEEE Transactions on Neural Networks 21 (5), 831-840, 2010 | 114 | 2010 |
On the generalization ability of GRLVQ networks B Hammer, M Strickert, T Villmann Neural Processing Letters 21, 109-120, 2005 | 112 | 2005 |
Divergence-based vector quantization T Villmann, S Haase Neural Computation 23 (5), 1343-1392, 2011 | 102 | 2011 |
Magnification control in self-organizing maps and neural gas T Villmann, JC Claussen Neural Computation 18 (2), 446-469, 2006 | 101 | 2006 |
Computational aspects of inverse analyses for determining softening curves of concrete V Slowik, B Villmann, N Bretschneider, T Villmann Computer Methods in Applied Mechanics and Engineering 195 (52), 7223-7236, 2006 | 86 | 2006 |
Applications of lp-Norms and their Smooth Approximations for Gradient Based Learning Vector Quantization. M Lange, D Zühlke, O Holz, T Villmann, SG Mittweida ESANN, 271-276, 2014 | 81 | 2014 |
Divergence-based classification in learning vector quantization E Mwebaze, P Schneider, FM Schleif, JR Aduwo, JA Quinn, S Haase, ... Neurocomputing 74 (9), 1429-1435, 2011 | 76 | 2011 |
Aspects in classification learning-Review of recent developments in Learning Vector Quantization M Kaden, M Lange, D Nebel, M Riedel, T Geweniger, T Villmann Foundations of Computing and Decision Sciences 39 (2), 79-105, 2014 | 75 | 2014 |
Exploratory observation machine (XOM) with Kullback-Leibler divergence for dimensionality reduction and visualization K Bunte, B Hammer, T Villmann, M Biehl, A Wismüller 18th European Symposium on Artificial Neural Networks (ESANN 2010), 87-92, 2010 | 75 | 2010 |