Topic modeling for untargeted substructure exploration in metabolomics JJJ van Der Hooft, J Wandy, MP Barrett, KEV Burgess, S Rogers Proceedings of the National Academy of Sciences 113 (48), 13738-13743, 2016 | 340 | 2016 |
MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools M Ernst, KB Kang, AM Caraballo-Rodríguez, LF Nothias, J Wandy, ... Metabolites 9 (7), 144, 2019 | 323 | 2019 |
Ms2lda.org: web-based topic modelling for substructure discovery in mass spectrometry J Wandy, Y Zhu, JJJ van der Hooft, R Daly, MP Barrett, S Rogers Bioinformatics, 2017 | 103 | 2017 |
MetAssign: probabilistic annotation of metabolites from LC–MS data using a Bayesian clustering approach R Daly, S Rogers, J Wandy, A Jankevics, KEV Burgess, R Breitling Bioinformatics 30 (19), 2764-2771, 2014 | 79 | 2014 |
Deciphering complex metabolite mixtures by unsupervised and supervised substructure discovery and semi-automated annotation from MS/MS spectra S Rogers, CW Ong, J Wandy, M Ernst, L Ridder, JJJ Van Der Hooft Faraday Discussions 218, 284-302, 2019 | 72 | 2019 |
Unsupervised discovery and comparison of structural families across multiple samples in untargeted metabolomics JJJ van der Hooft, J Wandy, F Young, S Padmanabhan, K Gerasimidis, ... Analytical Chemistry 89 (14), 7569-7577, 2017 | 61 | 2017 |
Rapid Development of Improved Data-Dependent Acquisition Strategies V Davies, J Wandy, S Weidt, JJJ van der Hooft, A Miller, R Daly, S Rogers Analytical Chemistry 93 (14), 5676-5683, 2021 | 58 | 2021 |
PiMP my metabolome: an integrated, web-based tool for LC-MS metabolomics data Y Gloaguen, F Morton, R Daly, R Gurden, S Rogers, J Wandy, D Wilson, ... Bioinformatics 33 (24), 4007-4009, 2017 | 49 | 2017 |
Ranking microbial metabolomic and genomic links in the NPLinker framework using complementary scoring functions G Hjoerleifsson Eldjarn, A Ramsay, JJJ Van Der Hooft, KR Duncan, ... PLoS computational biology 17 (5), e1008920, 2021 | 46 | 2021 |
In silico optimization of mass spectrometry fragmentation strategies in metabolomics J Wandy, V Davies, JJJ Van Der Hooft, S Weidt, R Daly, S Rogers Metabolites 9 (10), 219, 2019 | 22 | 2019 |
Ranking metabolite sets by their activity levels K McLuskey, J Wandy, I Vincent, JJJ Van Der Hooft, S Rogers, K Burgess, ... Metabolites 11 (2), 103, 2021 | 21 | 2021 |
Incorporating peak grouping information for alignment of multiple liquid chromatography-mass spectrometry datasets J Wandy, R Daly, R Breitling, S Rogers Bioinformatics 31 (12), 1999-2006, 2015 | 19 | 2015 |
GraphOmics: an interactive platform to explore and integrate multi-omics data J Wandy, R Daly BMC bioinformatics 22, 1-19, 2021 | 11 | 2021 |
Simulated-to-real benchmarking of acquisition methods in untargeted metabolomics J Wandy, R Mcbride, S Rogers, N Terzis, S Weidt, JJJ van der Hooft, ... Frontiers in Molecular Biosciences, 2023 | 4 | 2023 |
ViMMS 2.0: A framework to develop, test and optimise fragmentation strategies in LC-MS metabolomics J Wandy, V Davies, R McBride, S Weidt, S Rogers, R Daly Journal of Open Source Software 7 (71), 2022 | 4 | 2022 |
R package for statistical inference in dynamical systems using kernel based gradient matching: KGode M Niu, J Wandy, R Daly, S Rogers, D Husmeier Computational Statistics 36, 715-747, 2021 | 3 | 2021 |
ShinyKGode: an interactive application for ODE parameter inference using gradient matching J Wandy, M Niu, D Giurghita, R Daly, S Rogers, D Husmeier Bioinformatics 34 (13), 2314-2315, 2018 | 3 | 2018 |
TopNEXt: Automatic DDA exclusion framework for multi-sample mass spectrometry experiments R McBride, J Wandy, S Weidt, S Rogers, V Davies, R Daly, K Bryson Bioinformatics 39 (7), btad406, 2023 | 2 | 2023 |
Unsupervised Bayesian explorations of mass spectrometry data J Wandy University of Glasgow, 2017 | 1 | 2017 |
Integrated metabolome mining and annotation pipeline accelerates elucidation and prioritisation of specialised metabolites J van der Hooft, M Ernst, R da Silva, M Wang, KB Kang, J Wandy, ... MDPI AG, 2018 | | 2018 |