Weakly-convex–concave min–max optimization: provable algorithms and applications in machine learning H Rafique, M Liu, Q Lin, T Yang Optimization Methods and Software 37 (3), 1087-1121, 2022 | 258 | 2022 |
First-order convergence theory for weakly-convex-weakly-concave min-max problems M Liu, H Rafique, Q Lin, T Yang Journal of Machine Learning Research 22 (169), 1-34, 2021 | 113* | 2021 |
Stochastic AUC Maximization with Deep Neural Networks M Liu, Z Yuan, Y Ying, T Yang International Conference on Learning Representations 2020, 2019 | 93 | 2019 |
Improved Schemes for Episodic Memory-based Lifelong Learning Y Guo*, M Liu*, T Yang, T Rosing Advances in Neural Information Processing Systems 33, 2020 | 90 | 2020 |
Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets M Liu, Y Mroueh, J Ross, W Zhang, X Cui, P Das, T Yang International Conference on Learning Representations 2020, 2019 | 76 | 2019 |
A decentralized parallel algorithm for training generative adversarial nets M Liu, W Zhang, Y Mroueh, X Cui, J Ross, T Yang, P Das Advances in Neural Information Processing Systems 33, 11056-11070, 2020 | 73 | 2020 |
Fast Stochastic AUC Maximization with -Convergence Rate M Liu, X Zhang, Z Chen, X Wang, T Yang International Conference on Machine Learning, 3189-3197, 2018 | 71 | 2018 |
ADMM without a fixed penalty parameter: Faster convergence with new adaptive penalization Y Xu, M Liu, Q Lin, T Yang Advances in neural information processing systems 30, 2017 | 60 | 2017 |
Understanding adamw through proximal methods and scale-freeness Z Zhuang, M Liu, A Cutkosky, F Orabona Transactions on machine learning research, 2022 | 51 | 2022 |
Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks Z Guo, M Liu, Z Yuan, L Shen, W Liu, T Yang International Conference on Machine Learning 2020, 2020 | 43 | 2020 |
Robustness to unbounded smoothness of generalized signsgd M Crawshaw, M Liu, F Orabona, W Zhang, Z Zhuang Advances in neural information processing systems 35, 9955-9968, 2022 | 40 | 2022 |
Adaptive negative curvature descent with applications in non-convex optimization M Liu, Z Li, X Wang, J Yi, T Yang Advances in Neural Information Processing Systems, 4853-4862, 2018 | 40* | 2018 |
Will bilevel optimizers benefit from loops K Ji, M Liu, Y Liang, L Ying Advances in Neural Information Processing Systems 35, 3011-3023, 2022 | 31 | 2022 |
Adaptive accelerated gradient converging methods under holderian error bound condition M Liu, T Yang Advances in Neural Information Processing Systems 30, 2016 | 28 | 2016 |
Spatiotemporal dynamics in a network composed of neurons with different excitabilities and excitatory coupling WW Xiao, HG Gu, MR Liu Science China Technological Sciences 59, 1943-1952, 2016 | 27 | 2016 |
Generalization guarantee of SGD for pairwise learning Y Lei, M Liu, Y Ying Advances in neural information processing systems 34, 21216-21228, 2021 | 25 | 2021 |
Adam: A Stochastic Method with Adaptive Variance Reduction M Liu, W Zhang, F Orabona, T Yang arXiv preprint arXiv:2011.11985, 2020 | 25 | 2020 |
Fast rates of erm and stochastic approximation: Adaptive to error bound conditions M Liu, X Zhang, L Zhang, R Jin, T Yang Advances in Neural Information Processing Systems 30, 2018 | 19 | 2018 |
Improving efficiency in large-scale decentralized distributed training W Zhang, X Cui, A Kayi, M Liu, U Finkler, B Kingsbury, G Saon, Y Mroueh, ... ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and …, 2020 | 15 | 2020 |
A communication-efficient distributed gradient clipping algorithm for training deep neural networks M Liu, Z Zhuang, Y Lei, C Liao Advances in Neural Information Processing Systems 35, 26204-26217, 2022 | 12 | 2022 |