A nonparametric approach for multiple change point analysis of multivariate data DS Matteson, NA James Journal of the American Statistical Association 109 (505), 334-345, 2014 | 652 | 2014 |
ecp: An R package for nonparametric multiple change point analysis of multivariate data NA James, DS Matteson arXiv preprint arXiv:1309.3295, 2013 | 326 | 2013 |
Leveraging cloud data to mitigate user experience from ‘Breaking Bad’ NA James, A Kejariwal, DS Matteson 2016 IEEE International Conference on Big Data (Big Data), 3499-3508, 2016 | 80 | 2016 |
Pruning and Nonparametric Multiple Change Point Detection W Zhang, NA James, DS Matteson 2017 IEEE International Conference on Data Mining Workshops (ICDMW), 288-295, 2017 | 29 | 2017 |
steadyICA: ICA and tests of independence via multivariate distance covariance BB Risk, NA James, DS Matteson R package version 1, 2015 | 19 | 2015 |
Change Points via Probabilistically Pruned Objectives NA James, DS Matteson arXiv preprint arXiv:1505.04302, 2015 | 9 | 2015 |
Locally stationary vector processes and adaptive multivariate modeling DS Matteson, NA James, WB Nicholson, LC Segalini 2013 IEEE International Conference on Acoustics, Speech and Signal …, 2013 | 9 | 2013 |
Multiple Change Point Analysis of Multivariate Data Via Energy Statistics N James Cornell University, 2015 | 2 | 2015 |
Statistical Measures of Dependence for Financial Data DS Matteson, NA James, WB Nicholson Financial Signal Processing and Machine Learning, 162, 2016 | 1 | 2016 |
Package ‘ecp’ NA James, W Zhang, DS Matteson, MW Zhang | | 2019 |