Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports H Gurulingappa, AM Rajput, A Roberts, J Fluck, M Hofmann-Apitius, ... Journal of biomedical informatics 45 (5), 885-892, 2012 | 456 | 2012 |
ProMiner: rule-based protein and gene entity recognition D Hanisch, K Fundel, HT Mevissen, R Zimmer, J Fluck BMC bioinformatics 6, 1-9, 2005 | 419 | 2005 |
Overview of BioCreative II gene normalization AA Morgan, Z Lu, X Wang, AM Cohen, J Fluck, P Ruch, A Divoli, K Fundel, ... Genome biology 9, 1-19, 2008 | 412 | 2008 |
Playing biology's name game: identifying protein names in scientific text D Hanisch, J Fluck, HT Mevissen, R Zimmer Biocomputing 2003, 403-414, 2002 | 174 | 2002 |
Detection of IUPAC and IUPAC-like chemical names R Klinger, C Kolářik, J Fluck, M Hofmann-Apitius, CM Friedrich Bioinformatics 24 (13), i268-i276, 2008 | 173 | 2008 |
Normal human primary fibroblasts undergo apoptosis in three-dimensional contractile collagen gels J Fluck, C Querfeld, A Cremer, S Niland, T Krieg, S Sollberg Journal of investigative dermatology 110 (2), 153-157, 1998 | 160 | 1998 |
Microarrays: how many do you need? A Zien, J Fluck, R Zimmer, T Lengauer Proceedings of the sixth annual international conference on Computational …, 2002 | 98 | 2002 |
Chemical names: terminological resources and corpora annotation C Kolárik, R Klinger, CM Friedrich, M Hofmann-Apitius, J Fluck Workshop on Building and evaluating resources for biomedical text mining …, 2008 | 92 | 2008 |
Contraction-dependent apoptosis of normal dermal fibroblasts S Niland, A Cremer, J Fluck, T Krieg, S Sollberg, JA Eble Journal of investigative dermatology 116 (5), 686-692, 2001 | 82 | 2001 |
ProMiner: recognition of human gene and protein names using regularly updated dictionaries J Fluck, HT Mevissen, H Dach, M Oster, M Hofmann-Apitius Proceedings of the second BioCreative challenge evaluation workshop, 149-151, 2007 | 54 | 2007 |
An empirical evaluation of resources for the identification of diseases and adverse effects in biomedical literature H Gurulingappa, R Klinger, M Hofmann-Apitius, J Fluck 2nd Workshop on Building and evaluating resources for biomedical text mining …, 2010 | 53 | 2010 |
Identification of new drug classification terms in textual resources C Kolářik, M Hofmann-Apitius, M Zimmermann, J Fluck Bioinformatics 23 (13), i264-i272, 2007 | 51 | 2007 |
Mining biomarker information in biomedical literature E Younesi, L Toldo, B Müller, CM Friedrich, N Novac, A Scheer, ... BMC medical informatics and decision making 12, 1-13, 2012 | 50 | 2012 |
The Autoimmune Disease Database: a dynamically compiled literature-derived database T Karopka, J Fluck, HT Mevissen, Ä Glass BMC bioinformatics 7, 1-17, 2006 | 49 | 2006 |
Text mining for systems biology J Fluck, M Hofmann-Apitius Drug discovery today 19 (2), 140-144, 2014 | 48 | 2014 |
Named entity recognition with combinations of conditional random fields R Klinger, CM Friedrich, J Fluck, M Hofmann-Apitius Proceedings of the second biocreative challenge evaluation workshop 23, 89-91, 2007 | 46 | 2007 |
Identification of adverse drug event assertive sentences in medical case reports H Gurulingappa, J Fluck, M Hofmann-Apitius, L Toldo First international workshop on knowledge discovery and health care …, 2011 | 42 | 2011 |
Detecting miRNA mentions and relations in biomedical literature S Bagewadi, T Bobić, M Hofmann-Apitius, J Fluck, R Klinger F1000Research 3, 2014 | 41 | 2014 |
Biomedical and Chemical Named Entity Recognition with Conditional Random Fields: The Advantage of Dictionary Features. CM Friedrich, T Revillion, M Hofmann, J Fluck SMBM, 2006 | 41 | 2006 |
Overview of the interactive task in BioCreative V Q Wang, S S. Abdul, L Almeida, S Ananiadou, YI Balderas-Martínez, ... Database 2016, baw119, 2016 | 38 | 2016 |