Artificial intelligence in early drug discovery enabling precision medicine F Boniolo, E Dorigatti, AJ Ohnmacht, D Saur, B Schubert, MP Menden Expert Opinion on Drug Discovery 16 (9), 991-1007, 2021 | 83 | 2021 |
Combining graph neural networks and spatio-temporal disease models to improve the prediction of weekly COVID-19 cases in Germany C Fritz, E Dorigatti, D Rügamer Scientific Reports 12 (1), 3930, 2022 | 77 | 2022 |
N-ary relation extraction for simultaneous T-Box and A-Box knowledge base augmentation M Fossati, E Dorigatti, C Giuliano Semantic Web 9 (4), 413-439, 2018 | 26 | 2018 |
Joint epitope selection and spacer design for string-of-beads vaccines E Dorigatti, B Schubert Bioinformatics 36 (Supplement_2), i643-i650, 2020 | 11 | 2020 |
Graph-theoretical formulation of the generalized epitope-based vaccine design problem E Dorigatti, B Schubert PLOS Computational Biology 16 (10), e1008237, 2020 | 11 | 2020 |
Positive-unlabeled learning with uncertainty-aware pseudo-label selection E Dorigatti, J Goschenhofer, B Schubert, M Rezaei, B Bischl | 8 | 2022 |
Approximately Bayes-optimal pseudo-label selection J Rodemann, J Goschenhofer, E Dorigatti, T Nagler, T Augustin Uncertainty in Artificial Intelligence, 1762-1773, 2023 | 7* | 2023 |
Joint Debiased Representation Learning and Imbalanced Data Clustering M Rezaei, E Dorigatti, D Rügamer, B Bischl 2022 IEEE International Conference on Data Mining Workshops (ICDMW), 55-62, 2022 | 7* | 2022 |
Predicting T cell receptor functionality against mutant epitopes F Drost, E Dorigatti, A Straub, P Hilgendorf, KI Wagner, K Heyer, ... Cell Genomics, 2024 | 4* | 2024 |
Frequentist uncertainty quantification in semi-structured neural networks E Dorigatti, B Schubert, B Bischl, D Rügamer International Conference on Artificial Intelligence and Statistics, 1924-1941, 2023 | 4 | 2023 |
Improved proteasomal cleavage prediction with positive-unlabeled learning E Dorigatti, B Bischl, B Schubert arXiv preprint arXiv:2209.07527, 2022 | 3 | 2022 |
Robust and efficient imbalanced positive-unlabeled learning with self-supervision E Dorigatti, J Schweisthal, B Bischl, M Rezaei arXiv preprint arXiv:2209.02459, 2022 | 2 | 2022 |
Selective background Monte Carlo simulation at Belle II J Kahn, E Dorigatti, K Lieret, A Lindner, T Kuhr EPJ Web of Conferences 245, 02028, 2020 | 2 | 2020 |
How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression L Kook, C Kolb, P Schiele, D Dold, M Arpogaus, C Fritz, PF Baumann, ... arXiv preprint arXiv:2405.05429, 2024 | | 2024 |
Neural Architecture Search for Genomic Sequence Data A Scheppach, HA Gündüz, E Dorigatti, PC Münch, AC McHardy, B Bischl, ... 2023 IEEE Conference on Computational Intelligence in Bioinformatics and …, 2023 | | 2023 |
Proteasomal cleavage prediction: state-of-the-art and future directions I Ziegler, B Ma, B Bischl, E Dorigatti, B Schubert bioRxiv, 2023.07. 17.549305, 2023 | | 2023 |
What cleaves? Is proteasomal cleavage prediction reaching a ceiling? I Ziegler, B Ma, E Nie, B Bischl, D Rügamer, B Schubert, E Dorigatti NeurIPS 2022 Workshop on Learning Meaningful Representations of Life, 2022 | | 2022 |
Joint Debiased Representation and Image Clustering Learning with Self-Supervision SF Zheng, JE Nam, E Dorigatti, B Bischl, S Azizi, M Rezaei arXiv preprint arXiv:2209.06941, 2022 | | 2022 |
Uncertainty-aware Pseudo-label Selection for Positive-Unlabeled Learning E Dorigatti, J Goschenhofer, B Schubert, M Rezaei, B Bischl arXiv preprint arXiv:2201.13192, 2022 | | 2022 |
The lessons I learnt supervising master’s students for the first time E Dorigatti Nature, 2021 | | 2021 |