关注
Emilio Dorigatti
Emilio Dorigatti
PhD student, LMU Munich
在 stat.uni-muenchen.de 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Artificial intelligence in early drug discovery enabling precision medicine
F Boniolo, E Dorigatti, AJ Ohnmacht, D Saur, B Schubert, MP Menden
Expert Opinion on Drug Discovery 16 (9), 991-1007, 2021
832021
Combining graph neural networks and spatio-temporal disease models to improve the prediction of weekly COVID-19 cases in Germany
C Fritz, E Dorigatti, D Rügamer
Scientific Reports 12 (1), 3930, 2022
772022
N-ary relation extraction for simultaneous T-Box and A-Box knowledge base augmentation
M Fossati, E Dorigatti, C Giuliano
Semantic Web 9 (4), 413-439, 2018
262018
Joint epitope selection and spacer design for string-of-beads vaccines
E Dorigatti, B Schubert
Bioinformatics 36 (Supplement_2), i643-i650, 2020
112020
Graph-theoretical formulation of the generalized epitope-based vaccine design problem
E Dorigatti, B Schubert
PLOS Computational Biology 16 (10), e1008237, 2020
112020
Positive-unlabeled learning with uncertainty-aware pseudo-label selection
E Dorigatti, J Goschenhofer, B Schubert, M Rezaei, B Bischl
82022
Approximately Bayes-optimal pseudo-label selection
J Rodemann, J Goschenhofer, E Dorigatti, T Nagler, T Augustin
Uncertainty in Artificial Intelligence, 1762-1773, 2023
7*2023
Joint Debiased Representation Learning and Imbalanced Data Clustering
M Rezaei, E Dorigatti, D Rügamer, B Bischl
2022 IEEE International Conference on Data Mining Workshops (ICDMW), 55-62, 2022
7*2022
Predicting T cell receptor functionality against mutant epitopes
F Drost, E Dorigatti, A Straub, P Hilgendorf, KI Wagner, K Heyer, ...
Cell Genomics, 2024
4*2024
Frequentist uncertainty quantification in semi-structured neural networks
E Dorigatti, B Schubert, B Bischl, D Rügamer
International Conference on Artificial Intelligence and Statistics, 1924-1941, 2023
42023
Improved proteasomal cleavage prediction with positive-unlabeled learning
E Dorigatti, B Bischl, B Schubert
arXiv preprint arXiv:2209.07527, 2022
32022
Robust and efficient imbalanced positive-unlabeled learning with self-supervision
E Dorigatti, J Schweisthal, B Bischl, M Rezaei
arXiv preprint arXiv:2209.02459, 2022
22022
Selective background Monte Carlo simulation at Belle II
J Kahn, E Dorigatti, K Lieret, A Lindner, T Kuhr
EPJ Web of Conferences 245, 02028, 2020
22020
How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression
L Kook, C Kolb, P Schiele, D Dold, M Arpogaus, C Fritz, PF Baumann, ...
arXiv preprint arXiv:2405.05429, 2024
2024
Neural Architecture Search for Genomic Sequence Data
A Scheppach, HA Gündüz, E Dorigatti, PC Münch, AC McHardy, B Bischl, ...
2023 IEEE Conference on Computational Intelligence in Bioinformatics and …, 2023
2023
Proteasomal cleavage prediction: state-of-the-art and future directions
I Ziegler, B Ma, B Bischl, E Dorigatti, B Schubert
bioRxiv, 2023.07. 17.549305, 2023
2023
What cleaves? Is proteasomal cleavage prediction reaching a ceiling?
I Ziegler, B Ma, E Nie, B Bischl, D Rügamer, B Schubert, E Dorigatti
NeurIPS 2022 Workshop on Learning Meaningful Representations of Life, 2022
2022
Joint Debiased Representation and Image Clustering Learning with Self-Supervision
SF Zheng, JE Nam, E Dorigatti, B Bischl, S Azizi, M Rezaei
arXiv preprint arXiv:2209.06941, 2022
2022
Uncertainty-aware Pseudo-label Selection for Positive-Unlabeled Learning
E Dorigatti, J Goschenhofer, B Schubert, M Rezaei, B Bischl
arXiv preprint arXiv:2201.13192, 2022
2022
The lessons I learnt supervising master’s students for the first time
E Dorigatti
Nature, 2021
2021
系统目前无法执行此操作,请稍后再试。
文章 1–20