Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? O Bernard, A Lalande, C Zotti, F Cervenansky, X Yang, PA Heng, I Cetin, ... IEEE transactions on medical imaging 37 (11), 2514-2525, 2018 | 1515 | 2018 |
Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation O Clatz, M Sermesant, PY Bondiau, H Delingette, SK Warfield, ... IEEE transactions on medical imaging 24 (10), 1334-1346, 2005 | 448 | 2005 |
SVF-Net: learning deformable image registration using shape matching MM Rohé, M Datar, T Heimann, M Sermesant, X Pennec Medical Image Computing and Computer Assisted Intervention− MICCAI 2017 …, 2017 | 358 | 2017 |
Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: A preliminary clinical validation M Sermesant, R Chabiniok, P Chinchapatnam, T Mansi, F Billet, ... Medical image analysis 16 (1), 201-215, 2012 | 278 | 2012 |
An electromechanical model of the heart for image analysis and simulation M Sermesant, H Delingette, N Ayache IEEE transactions on medical imaging 25 (5), 612-625, 2006 | 277 | 2006 |
Inverse relationship between fractionated electrograms and atrial fibrosis in persistent atrial fibrillation: combined magnetic resonance imaging and high-density mapping AS Jadidi, H Cochet, AJ Shah, SJ Kim, E Duncan, S Miyazaki, ... Journal of the American College of Cardiology 62 (9), 802-812, 2013 | 251 | 2013 |
Multiphysics and multiscale modelling, data–model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics R Chabiniok, VY Wang, M Hadjicharalambous, L Asner, J Lee, ... Interface focus 6 (2), 20150083, 2016 | 247 | 2016 |
A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging Z Xiong, Q Xia, Z Hu, N Huang, C Bian, Y Zheng, S Vesal, N Ravikumar, ... Medical image analysis 67, 101832, 2021 | 238 | 2021 |
iLogDemons: A demons-based registration algorithm for tracking incompressible elastic biological tissues T Mansi, X Pennec, M Sermesant, H Delingette, N Ayache International journal of computer vision 92, 92-111, 2011 | 227 | 2011 |
A system for real-time XMR guided cardiovascular intervention KS Rhode, M Sermesant, D Brogan, S Hegde, J Hipwell, P Lambiase, ... IEEE transactions on medical imaging 24 (11), 1428-1440, 2005 | 211 | 2005 |
Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties M Sermesant, P Moireau, O Camara, J Sainte-Marie, ... Medical image analysis 10 (4), 642-656, 2006 | 192 | 2006 |
Benchmarking framework for myocardial tracking and deformation algorithms: An open access database C Tobon-Gomez, M De Craene, K Mcleod, L Tautz, W Shi, A Hennemuth, ... Medical image analysis 17 (6), 632-648, 2013 | 190 | 2013 |
A computational framework for the statistical analysis of cardiac diffusion tensors: application to a small database of canine hearts JM Peyrat, M Sermesant, X Pennec, H Delingette, C Xu, ER McVeigh, ... IEEE transactions on medical imaging 26 (11), 1500-1514, 2007 | 172 | 2007 |
Deformable biomechanical models: Application to 4D cardiac image analysis M Sermesant, C Forest, X Pennec, H Delingette, N Ayache Medical image analysis 7 (4), 475-488, 2003 | 167 | 2003 |
Application of soft tissue modelling to image-guided surgery TJ Carter, M Sermesant, DM Cash, DC Barratt, C Tanner, DJ Hawkes Medical engineering & physics 27 (10), 893-909, 2005 | 159 | 2005 |
In vivo human cardiac fibre architecture estimation using shape-based diffusion tensor processing N Toussaint, CT Stoeck, T Schaeffter, S Kozerke, M Sermesant, ... Medical image analysis 17 (8), 1243-1255, 2013 | 141 | 2013 |
euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling N Smith, A de Vecchi, M McCormick, D Nordsletten, O Camara, AF Frangi, ... Interface focus 1 (3), 349-364, 2011 | 140 | 2011 |
A pipeline for the generation of realistic 3D synthetic echocardiographic sequences: Methodology and open-access database M Alessandrini, M De Craene, O Bernard, S Giffard-Roisin, P Allain, ... IEEE transactions on medical imaging 34 (7), 1436-1451, 2015 | 134 | 2015 |
Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia J Relan, P Chinchapatnam, M Sermesant, K Rhode, M Ginks, ... Interface focus 1 (3), 396-407, 2011 | 133 | 2011 |
Regional myocardial wall thinning at multidetector computed tomography correlates to arrhythmogenic substrate in postinfarction ventricular tachycardia: assessment of … Y Komatsu, H Cochet, A Jadidi, F Sacher, A Shah, N Derval, D Scherr, ... Circulation: Arrhythmia and Electrophysiology 6 (2), 342-350, 2013 | 118 | 2013 |