关注
Sheena Agarwal
Sheena Agarwal
Application Scientist, BASF
在 basf.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
DART: deep learning enabled topological interaction model for energy prediction of metal clusters and its application in identifying unique low energy isomers
R Modee, S Agarwal, A Verma, K Joshi, UD Priyakumar
Physical Chemistry Chemical Physics 23 (38), 21995-22003, 2021
132021
Disordered but Efficient: Understanding the Role of Structure and Composition of the Co–Pt Alloy on the Electrocatalytic Methanol Oxidation Reaction
SB Dalavi, S Agarwal, P Deshpande, K Joshi, BLV Prasad
The Journal of Physical Chemistry C 125 (14), 7611-7624, 2021
92021
Understanding the ml black box with simple descriptors to predict cluster–adsorbate interaction energy
S Agarwal, S Mehta, K Joshi
New Journal of Chemistry 44 (20), 8545-8553, 2020
82020
Mixed metal oxide: A new class of catalyst for methanol activation
S Mehta, S Agarwal, N Kenge, SP Mekala, V Patil, T Raja, K Joshi
Applied Surface Science 534, 147449, 2020
62020
Looking Beyond Adsorption Energies to Understand Interactions at Surface Using Machine Learning
S Agarwal, K Joshi, S Agrawal
22021
DART: Deep Learning Enabled Topological Interaction Model for Energy Prediction of Metal Clusters and its Application in Identifying Unique Low Energy Isomers
R Modee, S Agarwal, A Verma, K Joshi, UD Priyakumar
2021
Combining DFT with ML to study size specific interactions between metal clusters and adsorbates
S Mehta, S Agarwal, K Joshi
arXiv preprint arXiv:1812.04932, 2018
2018
系统目前无法执行此操作,请稍后再试。
文章 1–7