Infinite time Turing machines JD Hamkins, A Lewis The Journal of Symbolic Logic 65 (2), 567-604, 2000 | 394 | 2000 |
The set-theoretic multiverse JD Hamkins The Review of Symbolic Logic 5 (3), 416-449, 2012 | 286 | 2012 |
The modal logic of forcing J Hamkins, B Löwe Transactions of the American Mathematical Society 360 (4), 1793-1817, 2008 | 121 | 2008 |
Extensions with the approximation and cover properties have no new large cardinals JD Hamkins arXiv preprint math/0307229, 2003 | 121 | 2003 |
The lottery preparation JD Hamkins Annals of Pure and Applied Logic 101 (2-3), 103-146, 2000 | 120 | 2000 |
Gap forcing JD Hamkins Israel Journal of Mathematics 125 (1), 237-252, 2001 | 113 | 2001 |
What is the theory ZFC without power set? V Gitman, JD Hamkins, TA Johnstone Mathematical Logic Quarterly 62 (4-5), 391-406, 2016 | 103 | 2016 |
Set-theoretic geology G Fuchs, JD Hamkins, J Reitz Annals of Pure and Applied Logic 166 (4), 464-501, 2015 | 99 | 2015 |
A simple maximality principle JD Hamkins The Journal of Symbolic Logic 68 (2), 527-550, 2003 | 91 | 2003 |
Infinite time Turing machines JD Hamkins Minds and Machines 12, 521-539, 2002 | 90 | 2002 |
The halting problem is decidable on a set of asymptotic probability one JD Hamkins, A Miasnikov Notre Dame Journal of Formal Logic 47 (4), 515-524, 2006 | 89 | 2006 |
Gap forcing: generalizing the Lévy-Solovay theorem JD Hamkins Bulletin of Symbolic Logic 5 (2), 264-272, 1999 | 81 | 1999 |
The modal logic of set-theoretic potentialism and the potentialist maximality principles JD Hamkins, Ø Linnebo The Review of Symbolic Logic 15 (1), 1-35, 2022 | 53 | 2022 |
Is the dream solution of the continuum hypothesis attainable? JD Hamkins | 53 | 2015 |
A natural model of the multiverse axioms VGJD Hamkins Notre Dame J. Formal Logic 51 (4), 475-484, 2010 | 51* | 2010 |
Well-founded Boolean ultrapowers as large cardinal embeddings JD Hamkins, DE Seabold arXiv preprint arXiv:1206.6075, 2012 | 46 | 2012 |
Infinite time Turing machines with only one tape JD Hamkins, DE Seabold Mathematical Logic Quarterly: Mathematical Logic Quarterly 47 (2), 271-287, 2001 | 45 | 2001 |
Small forcing creates neither strong nor Woodin cardinals JD Hamkins, WH Woodin Proceedings of the American Mathematical Society, 3025-3029, 2000 | 43 | 2000 |
The hierarchy of equivalence relations on the natural numbers under computable reducibility S Coskey, JD Hamkins, R Miller Computability 1 (1), 15-38, 2012 | 41 | 2012 |
Tall cardinals JD Hamkins Mathematical Logic Quarterly 55 (1), 68-86, 2009 | 40 | 2009 |