关注
Seungpyo Kang
Seungpyo Kang
Soongsil University
在 soongsil.ac.kr 的电子邮件经过验证
标题
引用次数
引用次数
年份
Maximizing the energy density and stability of Ni-rich layered cathode materials with multivalent dopants via machine learning
M Kim, S Kang, HG Park, K Park, K Min
Chemical Engineering Journal 452, 139254, 2023
322023
Accelerated discovery of novel garnet-type solid-state electrolyte candidates via machine learning
J Sun, S Kang, J Kim, K Min
ACS Applied Materials & Interfaces 15 (4), 5049-5057, 2023
202023
Machine Learning-Aided Discovery of Superionic Solid-State Electrolyte for Li-Ion Batteries
S Kang, M Kim, K Min
arXiv preprint arXiv:2202.06763, 2022
92022
Screening Platform for Promising Na Superionic Conductors for Na-Ion Solid-State Electrolytes
J Kim, S Kang, K Min
ACS Applied Materials & Interfaces 15 (35), 41417-41425, 2023
82023
Discovery of superionic solid-state electrolyte for Li-ion batteries via machine learning
S Kang, M Kim, K Min
The Journal of Physical Chemistry C 127 (39), 19335-19343, 2023
52023
Toward fast and accurate machine learning interatomic potentials for atomic layer deposition precursors
S Kang, J Kim, T Park, J Won, C Baik, J Han, K Min
Materials Today Advances 21, 100474, 2024
22024
Prediction of protein aggregation propensity via Data-Driven approaches
S Kang, M Kim, J Sun, M Lee, K Min
ACS Biomaterials Science & Engineering 9 (11), 6451-6463, 2023
22023
Integrating Data Mining and Natural Language Processing to Construct a Melting Point Database for Organometallic Compounds
J Jeong, T Park, JH Song, S Kang, J Won, J Han, K Min
Journal of Chemical Information and Modeling, 2024
2024
Interpretable machine learning boosting the discovery of targeted organometallic compounds with optimal bandgap
T Park, JH Song, J Jeong, S Kang, J Kim, J Won, J Han, K Min
Materials Today Advances 23, 100520, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–9