Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L1 J Casado-Díaz, T Chacón Rebollo, V Girault, M Gómez Mármol, F Murat Numerische Mathematik 105 (3), 337-374, 2007 | 73 | 2007 |
On a certified Smagorinsky reduced basis turbulence model TC Rebollo, ED Avila, MG Mármol, F Ballarin, G Rozza SIAM Journal on Numerical Analysis 55 (6), 3047-3067, 2017 | 63 | 2017 |
A high order term-by-term stabilization solver for incompressible flow problems TC Rebollo, MG Mármol, V Girault, IS Munoz IMA Journal of Numerical Analysis 33 (3), 974-1007, 2013 | 47 | 2013 |
Computational modeling of gurney flaps and microtabs by POD method U Fernandez-Gamiz, M Gomez-Mármol, T Chacón-Rebollo Energies 11 (8), 2091, 2018 | 35 | 2018 |
A flux‐splitting solver for shallow water equations with source terms TC Rebollo, EDF Nieto, MG Marmol International journal for numerical methods in fluids 42 (1), 23-55, 2003 | 35 | 2003 |
A model for two coupled turbulent fluids part III: Numerical approximation by finite elements C Bernardi, TC Rebollo, MG Mármol, R Lewandowski, F Murat Numerische Mathematik 98, 33-66, 2004 | 33* | 2004 |
Numerical analysis of a finite element projection-based VMS turbulence model with wall laws TC Rebollo, MG Mármol, S Rubino Computer Methods in Applied Mechanics and Engineering 285, 379-405, 2015 | 30 | 2015 |
Applied machine learning algorithms for courtyards thermal patterns accurate prediction E Diz-Mellado, S Rubino, S Fernández-García, M Gómez-Mármol, ... Mathematics 9 (10), 1142, 2021 | 24 | 2021 |
Certified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height F Ballarin, TC Rebollo, ED Avila, MG Mármol, G Rozza Computers & Mathematics with Applications 80 (5), 973-989, 2020 | 22 | 2020 |
A high-order local projection stabilization method for natural convection problems T Chacón Rebollo, M Gomez Marmol, F Hecht, S Rubino, ... Journal of Scientific Computing 74, 667-692, 2018 | 22 | 2018 |
Numerical analysis of penalty stabilized finite element discretizations of evolution Navier–Stokes equations TC Rebollo, MG Mármol, M Restelli Journal of Scientific Computing 63 (3), 885-912, 2015 | 18 | 2015 |
Stability of some turbulent vertical models for the ocean mixing boundary layer AC Bennis, TC Rebollo, MG Mármol, R Lewandowski Applied mathematics letters 21 (2), 128-133, 2008 | 15 | 2008 |
Numerical approximation of the Smagorinsky turbulence model applied to the primitive equations of the ocean TC Rebollo, F Hecht, MG Mármol, G Orzetti, S Rubino Mathematics and Computers in Simulation 99, 54-70, 2014 | 14 | 2014 |
Numerical modelling of algebraic closure models of oceanic turbulent mixing layers AC Bennis, TC Rebollo, MG Mármol, R Lewandowski ESAIM: Mathematical Modelling and Numerical Analysis 44 (6), 1255-1277, 2010 | 14 | 2010 |
The TR-BDF2 method for second order problems in structural mechanics L Bonaventura, MG Mármol Computers & Mathematics with Applications 92, 13-26, 2021 | 12 | 2021 |
Numerical analysis of the PSI solution of advection–diffusion problems through a Petrov–Galerkin formulation T Chacón Rebollo, M Gómez Mármol, G Narbona Reina Mathematical models and methods in applied sciences 17 (11), 1905-1936, 2007 | 12 | 2007 |
Numerical analysis of penalty stabilized finite element discretizations of evolution navier–stokes equations T Chacón Rebollo, M Gómez Mármol, M Restelli Journal of Scientific Computing 63, 885-912, 2015 | 10 | 2015 |
Finite element approximation of an unsteady projection-based VMS turbulence model with wall laws TC Rebollo, MG Mármol, S Rubino Boundary and Interior Layers, Computational and Asymptotic Methods-BAIL 2014 …, 2015 | 10 | 2015 |
Coupling the Stokes and Navier–Stokes equations with two scalar nonlinear parabolic equations MG Mármol, FO Gallego ESAIM: Mathematical Modelling and Numerical Analysis 33 (1), 157-167, 1999 | 10 | 1999 |
On the existence and asymptotic stability of solutions for unsteady mixing-layer models T Chacon-Rebollo, M Gomez-Marmol, S Rubino | 9 | 2014 |