General classes of shrinkage estimators for the multivariate normal mean with unknown variance: Minimaxity and limit of risks ratios A Benkhaled, A Hamdaoui Kragujevac J. Math 46 (2), 193-213, 2019 | 14 | 2019 |
Asymptotic properties of risks ratios of shrinkage estimators H Abdenour, B Djamel Hacettepe Journal of Mathematics and Statistics 44 (5), 1181-1195, 2015 | 14 | 2015 |
Minimaxity and limits of risks ratios of shrinkage estimators of a multivariate normal mean in the Bayesian case A Hamdaoui, A Benkhaled, N Mezouar arXiv preprint arXiv:2002.05792, 2020 | 13 | 2020 |
Limit of the ratio of risks of James-Stein estimators with unknown variance D Benmansour, A Hamdaoui Far East J. Theo. Stat 36, 31-53, 2011 | 13 | 2011 |
Baranchick-type estimators of a multivariate normal mean under the general quadratic loss function A Hamdaoui, A Benkhaled, M Terbeche Сибирский федеральный университет. Siberian Federal University, 2020 | 5 | 2020 |
Risks Ratios of shrinkage estimators for the multivariate normal mean A Hamdaoui, N Mezouar Journal of Mathematics and Statistics, Science Publication 13 (2), 77-87, 2017 | 5 | 2017 |
Comparison of risk ratios of shrinkage estimators in high dimensions A Hamdaoui, W Almutiry, M Terbeche, A Benkhaled Mathematics 10 (1), 52, 2021 | 4 | 2021 |
Polynomials shrinkage estimators of a multivariate normal mean A Benkhaled, M Terbeche, A Hamdaoui arXiv preprint arXiv:2107.14021, 2021 | 4 | 2021 |
On shrinkage estimators improving the positive part of James-Stein estimator A Hamdaoui Demonstratio Mathematica 54 (1), 462-473, 2021 | 3 | 2021 |
Examples of shrinkage estimators of the mean, dominating the maximum likelihood estimator in larges dimension A Hamdaoui, N Mezouar, D Benmansour, D Bouguenna IOSR Journal of Mathematics 12 (3), 14-28, 2016 | 3 | 2016 |
A study of minimax shrinkage estimators dominating the James-Stein estimator under the balanced loss function A Benkhaled, A Hamdaoui, W Almutiry, M Alshahrani, M Terbeche Open Mathematics 20 (1), 1-11, 2022 | 2 | 2022 |
Minimax shrinkage estimators and estimators dominating the James-Stein estimator under the balanced loss function A Benkhaled, A Hamdaoui, M Terbeche Eurasian Mathematical Journal 13 (2), 18-36, 2022 | 2 | 2022 |
ON MINIMAXITY AND LIMIT OF RISKS RATIO OF JAMES-STEIN ESTIMATOR UNDER THE BALANCED LOSS FUNCTION A HAMDAOUI, A BENKHALED, M TERBECHE Kragujevac Journal of Mathematics 47 (3), 459-479, 2023 | 1 | 2023 |
[Retracted] On Some Classes of Estimators Derived from the Positive Part of James–Stein Estimator A Hamdaoui, A Benkhaled, M Alshahrani, M Terbeche, W Almutiry, ... Journal of Mathematics 2023 (1), 5221061, 2023 | 1 | 2023 |
On shrinkage estimators improving the James-Stein estimator under balanced loss function A Hamdaoui, M Terbeche, A Benkhaled Pakistan Journal of Statistics and Operation Research, 711-727, 2021 | 1 | 2021 |
On Some Classes of Estimators Derived from the Positive Part of James–Stein Estimator A Hamdaoui, A Benkhaled, M Alshahrani, M Terbeche, W Almutiry, ... Journal of Mathematics 2023, 1-12, 2023 | | 2023 |
On derived estimators from the maximum likelihood estimator: minimaxity and improvement of the James-Stein estimator. M Terbeche, A Hamdaoui, A Benkhaled, A Benmeftah Nonlinear Studies 29 (2), 2022 | | 2022 |
Research Article On Some Classes of Estimators Derived from the Positive Part of James–Stein Estimator A Hamdaoui, A Benkhaled, M Alshahrani, M Terbeche, W Almutiry, ... | | 2022 |
Polycopié: Probabilité, cours et exercices d'applications H Abdenour University of Sciences and Technology of Oran, 2021 | | 2021 |
Journal of Siberian Federal University. Mathematics & Physics M Terbeche, A Benkhaled, A Hamdaoui Journal of Siberian Federal University. Mathematics & Physics 14 (3), 301-312, 2021 | | 2021 |