关注
Charles Schaff
标题
引用次数
引用次数
年份
Bayesian optimization for automated model selection
G Malkomes, C Schaff, R Garnett
Advances in neural information processing systems 29, 2016
1442016
Jointly learning to construct and control agents using deep reinforcement learning
C Schaff, D Yunis, A Chakrabarti, MR Walter
2019 international conference on robotics and automation (ICRA), 9798-9805, 2019
1092019
Residual policy learning for shared autonomy
C Schaff, MR Walter
arXiv preprint arXiv:2004.05097, 2020
422020
Soft robots learn to crawl: Jointly optimizing design and control with sim-to-real transfer
C Schaff, A Sedal, MR Walter
arXiv preprint arXiv:2202.04575, 2022
252022
Benchmarking structured policies and policy optimization for real-world dexterous object manipulation
N Funk, C Schaff, R Madan, T Yoneda, JU De Jesus, J Watson, ...
IEEE Robotics and Automation Letters 7 (1), 478-485, 2021
252021
Real robot challenge: A robotics competition in the cloud
S Bauer, M Wüthrich, F Widmaier, A Buchholz, S Stark, A Goyal, ...
NeurIPS 2021 Competitions and Demonstrations Track, 190-204, 2022
17*2022
Jointly optimizing placement and inference for beacon-based localization
C Schaff, D Yunis, A Chakrabarti, MR Walter
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2017
132017
Grasp and motion planning for dexterous manipulation for the real robot challenge
T Yoneda, C Schaff, T Maeda, M Walter
arXiv preprint arXiv:2101.02842, 2021
102021
N-limb: Neural limb optimization for efficient morphological design
C Schaff, MR Walter
arXiv preprint arXiv:2207.11773, 2022
52022
Sim-to-real transfer of co-optimized soft robot crawlers
C Schaff, A Sedal, S Ni, MR Walter
Autonomous Robots 47 (8), 1195-1211, 2023
32023
Neural approaches to co-optimization in robotics
C Schaff
arXiv preprint arXiv:2209.00579, 2022
22022
系统目前无法执行此操作,请稍后再试。
文章 1–11