关注
Min Wang
Min Wang
National University of Singapore, National university of Defense technology
在 u.nus.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
STGNN-TTE: Travel time estimation via spatial–temporal graph neural network
G Jin, M Wang, J Zhang, H Sha, J Huang
Future Generation Computer Systems 126, 70-81, 2022
542022
Research on optimal hub location of agricultural product transportation network based on hierarchical hub-and-spoke network model
M Wang, Q Cheng, J Huang, G Cheng
Physica A: Statistical Mechanics and its Applications 566, 125412, 2021
292021
Gcl: Graph calibration loss for trustworthy graph neural network
M Wang, H Yang, Q Cheng
Proceedings of the 30th ACM International Conference on Multimedia, 988-996, 2022
162022
Towards stochastic neural network via feature distribution calibration
H Yang, M Wang, Y Zhou, Y Yang
2021 IEEE International Conference on Data Mining (ICDM), 1445-1450, 2021
52021
Rethinking feature uncertainty in stochastic neural networks for adversarial robustness
H Yang, M Wang, Z Yu, Y Zhou
arXiv preprint arXiv:2201.00148, 2022
42022
A Simple Stochastic Neural Network for Improving Adversarial Robustness
H Yang, M Wang, Z Yu, Y Zhou
2023 IEEE International Conference on Multimedia and Expo(ICME2023), 2023
22023
Confidence-based and sample-reweighted test-time adaptation
H Yang, M Wang, Z Yu, H Zhang, J Jiang, Y Zhou
Knowledge-Based Systems 283, 111164, 2024
12024
Weight-based Regularization for Improving Robustness in Image Classification
H Yang, M Wang, Z Yu, Y Zhou
2023 IEEE International Conference on Multimedia and Expo(ICME2023), 2023
12023
Analysis of the European stock market's advance response time to COVID-19 based on Pearson correlation Coefficient
M Wang, Q Cheng, J Huang, G Cheng
Proceedings of the 2020 3rd International Conference on Algorithms …, 2020
12020
Non-informative noise-enhanced stochastic neural networks for improving adversarial robustness
H Yang, M Wang, Q Wang, Z Yu, G Jin, C Zhou, Y Zhou
Information Fusion 108, 102397, 2024
2024
Moderate Message Passing Improves Calibration: A Universal Way to Mitigate Confidence Bias in Graph Neural Networks
M Wang, H Yang, J Huang, Q Cheng
Proceedings of the AAAI Conference on Artificial Intelligence 38 (19), 21681 …, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–11