A numerical method for linear Volterra integral equations on infinite intervals and its application to the resolution of metastatic tumor growth models MC De Bonis, C Laurita, V Sagaria Applied Numerical Mathematics 172, 475-496, 2022 | 14 | 2022 |
Modeling metastatic tumor evolution, numerical resolution and growth prediction IM Bulai, MC De Bonis, C Laurita, V Sagaria Mathematics and Computers in Simulation 203, 721-740, 2023 | 8 | 2023 |
MatLab Toolbox for the numerical solution of linear Volterra integral equations arising in metastatic tumor growth models IM Bulai, MC De Bonis, C Laurita, V Sagaria Dolomites Research Notes on Approximation 15, 13-24, 2022 | 3 | 2022 |
Numerical method for hypersingular integrals of highly oscillatory functions on the positive semiaxis MC De Bonis, V Sagaria Dolomites Research Notes on Approximation 15 (DRNA Volume 15.3), 49-64, 2022 | 2 | 2022 |
Numerical method for boundary value problems on the real line MC De Bonis, V Sagaria Applied Numerical Mathematics 200, 179-194, 2024 | 1 | 2024 |
Nyström method for the numerical resolution of linear Volterra integral equations on infinite intervals MC De Bonis, C Laurita, V Sagaria PROCEEDINGS OF SIMAI 2020+ 21, 2021 | | 2021 |
A numerical method for hypersingular integrals of highly oscillatory functions on [0,+∞ MC De Bonis, V Sagaria Numerical Methods for Large Scale Problems, 33, 0 | | |
A new Nyström type method for solving BVP problems on real line MC De Bonisa, V Sagariaa PROCEEDINGS OF SIMAI 2023, 161, 0 | | |
Numericalmethodstoevaluatehypersingularintegralsof highlyoscillatoryfunctionsonthepositivesemiaxis MC De Bonis, V Sagaria | | |