The variational quantum eigensolver: a review of methods and best practices J Tilly, H Chen, S Cao, D Picozzi, K Setia, Y Li, E Grant, L Wossnig, ... Physics Reports 986, 1-128, 2022 | 620 | 2022 |
Quantum machine learning: a classical perspective C Ciliberto, M Herbster, AD Ialongo, M Pontil, A Rocchetto, S Severini, ... Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2018 | 439 | 2018 |
An initialization strategy for addressing barren plateaus in parametrized quantum circuits E Grant, L Wossnig, M Ostaszewski, M Benedetti Quantum 3, 214, 2019 | 407 | 2019 |
Quantum linear system algorithm for dense matrices L Wossnig, Z Zhao, A Prakash Physical review letters 120 (5), 050502, 2018 | 241 | 2018 |
Quantum gradient descent and Newton's method for constrained polynomial optimization P Rebentrost, M Schuld, L Wossnig, F Petruccione, S Lloyd https://arxiv.org/abs/1612.01789, 2017 | 162 | 2017 |
Quantum linear systems algorithms: a primer D Dervovic, M Herbster, P Mountney, S Severini, N Usher, L Wossnig arXiv preprint arXiv:1802.08227, 2018 | 111 | 2018 |
Adversarial quantum circuit learning for pure state approximation M Benedetti, E Grant, L Wossnig, S Severini New Journal of Physics 21 (4), 043023, 2019 | 90 | 2019 |
Universal discriminative quantum neural networks H Chen, L Wossnig, S Severini, H Neven, M Mohseni Quantum Machine Intelligence 3, 1-11, 2021 | 78 | 2021 |
Dynamical mean field theory algorithm and experiment on quantum computers I Rungger, N Fitzpatrick, H Chen, CH Alderete, H Apel, A Cowtan, ... arXiv preprint arXiv:1910.04735, 2019 | 57 | 2019 |
Quantum state discrimination using noisy quantum neural networks A Patterson, H Chen, L Wossnig, S Severini, D Browne, I Rungger Physical Review Research 3 (1), 013063, 2021 | 33 | 2021 |
Computation of molecular excited states on IBM quantum computers using a discriminative variational quantum eigensolver J Tilly, G Jones, H Chen, L Wossnig, E Grant Physical Review A 102 (6), 062425, 2020 | 31 | 2020 |
A quantum algorithm for simulating non-sparse Hamiltonians C Wang, L Wossnig arXiv preprint arXiv:1803.08273, 2018 | 30 | 2018 |
Generative training of quantum Boltzmann machines with hidden units N Wiebe, L Wossnig arXiv preprint arXiv:1905.09902, 2019 | 29 | 2019 |
Cost-function embedding and dataset encoding for machine learning with parametrized quantum circuits S Cao, L Wossnig, B Vlastakis, P Leek, E Grant Physical Review A 101 (5), 052309, 2020 | 28 | 2020 |
Approximating Hamiltonian dynamics with the Nyström method A Rudi, L Wossnig, C Ciliberto, A Rocchetto, M Pontil, S Severini Quantum 4, 234, 2020 | 14 | 2020 |
Statistical limits of supervised quantum learning C Ciliberto, A Rocchetto, A Rudi, L Wossnig Physical Review A 102 (4), 042414, 2020 | 10 | 2020 |
Quantum machine learning for classical data L Wossnig arXiv preprint arXiv:2105.03684, 2021 | 8 | 2021 |
Quantum relative entropy training of boltzmann machines NO Wiebe, LP Wossnig US Patent App. 16/289,417, 2020 | 5 | 2020 |
Computation of molecular excited states on IBMQ using a Discriminative Variational Quantum Eigensolver J Tilly, G Jones, H Chen, L Wossnig, E Grant arXiv e-prints, arXiv: 2001.04941, 2020 | 5 | 2020 |
Fast quantum learning with statistical guarantees C Ciliberto, A Rocchetto, A Rudi, L Wossnig arXiv preprint arXiv:2001.10477, 2020 | 4 | 2020 |