Recent advances and applications of machine learning in solid-state materials science J Schmidt, MRG Marques, S Botti, MAL Marques npj Computational Materials 5 (1), 1-36, 2019 | 1719 | 2019 |
Predicting the thermodynamic stability of solids combining density functional theory and machine learning J Schmidt, J Shi, P Borlido, L Chen, S Botti, MAL Marques Chemistry of Materials 29 (12), 5090-5103, 2017 | 305 | 2017 |
Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning P Borlido, J Schmidt, AW Huran, F Tran, MAL Marques, S Botti npj Computational Materials 6 (1), 1-17, 2020 | 208 | 2020 |
Roadmap on Machine Learning in Electronic Structure H Kulik, T Hammerschmidt, J Schmidt, S Botti, MAL Marques, M Boley, ... Electronic Structure, 2022 | 110 | 2022 |
Machine Learning the Physical Nonlocal Exchange–Correlation Functional of Density-Functional Theory J Schmidt, CL Benavides-Riveros, MAL Marques Journal of Physical Chemistry Letters, 2019 | 85 | 2019 |
Crystal graph attention networks for the prediction of stable materials J Schmidt, L Pettersson, C Verdozzi, S Botti, MAL Marques Science Advances 7 (49), eabi7948, 2021 | 79 | 2021 |
Predicting the stability of ternary intermetallics with density functional theory and machine learning J Schmidt, L Chen, S Botti, MAL Marques The Journal of chemical physics 148 (24), 2018 | 44 | 2018 |
Machine-learning-assisted determination of the global zero-temperature phase diagram of materials. J Schmidt, N Hoffmann, HC Wang, P Borlido, PJMA Carriço, ... Advanced Materials, e2210788-e2210788, 2023 | 29* | 2023 |
Machine learning the derivative discontinuity of density-functional theory J Gedeon, J Schmidt, MJP Hodgson, J Wetherell, CL Benavides-Riveros, ... Machine Learning: Science and Technology 3 (1), 015011, 2021 | 26 | 2021 |
Reduced density matrix functional theory for superconductors J Schmidt, CL Benavides-Riveros, MAL Marques Physical Review B 99 (22), 224502, 2019 | 24 | 2019 |
A dataset of 175k stable and metastable materials calculated with the PBEsol and SCAN functionals J Schmidt, HC Wang, TFT Cerqueira, MAL Marques Scientific Data 9 (64), 2022 | 23 | 2022 |
High-throughput study of oxynitride, oxyfluoride and nitrofluoride perovskites H Wang, J Schmidt, S Botti, MAL Marques Journal of Materials Chemistry A, 2021 | 23 | 2021 |
Machine learning universal bosonic functionals J Schmidt, M Fadel, CL Benavides-Riveros Physical Review Research 3 (3), L032063, 2021 | 14 | 2021 |
Superconductivity in antiperovskites N Hoffmann, T Cerqueira, J Schmidt, M Marques npj Computational Materials 8 (1), 2022 | 13 | 2022 |
Machine-learning correction to density-functional crystal structure optimization R Hussein, J Schmidt, T Barros, MAL Marques, S Botti MRS Bulletin 47 (8), 765-771, 2022 | 8 | 2022 |
Transfer learning on large datasets for the accurate prediction of material properties N Hoffmann, J Schmidt, S Botti, MAL Marques Digital Discovery, 2023 | 6 | 2023 |
Symmetry-based computational search for novel binary and ternary 2D materials HC Wang, J Schmidt, MAL Marques, L Wirtz, AH Romero 2D Materials 10 (3), 035007, 2023 | 5 | 2023 |
Representability problem of density functional theory for superconductors J Schmidt, CL Benavides-Riveros, MAL Marques Physical Review B 99 (2), 024502, 2019 | 5 | 2019 |
Kapitza stabilization of a quantum critical order D Kuzmanovski, J Schmidt, NA Spaldin, G Aeppli, HM Rønnow, ... arXiv preprint arXiv:2208.09491:v3, 2024 | 3 | 2024 |
Developments and applications of the OPTIMADE API for materials discovery, design, and data exchange M Evans, J Bergsma, A Merkys, C Andersen, OB Andersson, D Beltrán, ... Digital Discovery, 2024 | 2 | 2024 |