Single-cell mRNA quantification and differential analysis with Census X Qiu, A Hill, J Packer, D Lin, YA Ma, C Trapnell Nature methods 14 (3), 309-315, 2017 | 1316 | 2017 |
Underspecification presents challenges for credibility in modern machine learning A D’Amour, K Heller, D Moldovan, B Adlam, B Alipanahi, A Beutel, ... Journal of Machine Learning Research, 2020 | 718 | 2020 |
A complete recipe for stochastic gradient MCMC YA Ma, T Chen, E Fox Advances in Neural Information Processing Systems, 2917-2925, 2015 | 561 | 2015 |
Mapping transcriptomic vector fields of single cells X Qiu, Y Zhang, JD Martin-Rufino, C Weng, S Hosseinzadeh, D Yang, ... Cell 185 (4), 690-711. e45, 2022 | 237* | 2022 |
Efficient and scalable bayesian neural nets with rank-1 factors M Dusenberry, G Jerfel, Y Wen, Y Ma, J Snoek, K Heller, ... International conference on machine learning, 2782-2792, 2020 | 222 | 2020 |
Sampling can be faster than optimization YA Ma, Y Chen, C Jin, N Flammarion, MI Jordan Proceedings of the National Academy of Sciences 116 (42), 20881-20885, 2019 | 202 | 2019 |
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States EY Cramer, EL Ray, VK Lopez, J Bracher, A Brennen, ... Proceedings of the National Academy of Sciences 119 (15), e2113561119, 2022 | 189 | 2022 |
Is there an analog of Nesterov acceleration for gradient-based MCMC? YA Ma, NS Chatterji, X Cheng, N Flammarion, PL Bartlett, MI Jordan Bernoulli 27 (3), 1942-1992, 2021 | 154 | 2021 |
Deep mixture of experts via shallow embedding X Wang, F Yu, L Dunlap, YA Ma, R Wang, A Mirhoseini, T Darrell, ... Uncertainty in Artificial Intelligence, 552-562, 2020 | 102 | 2020 |
On the theory of variance reduction for stochastic gradient Monte Carlo N Chatterji, N Flammarion, YA Ma, P Bartlett, M Jordan International Conference on Machine Learning, 764-773, 2018 | 97 | 2018 |
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm W Mou, YA Ma, MJ Wainwright, PL Bartlett, MI Jordan Journal of Machine Learning Research 22 (42), 1-41, 2021 | 85 | 2021 |
Quantifying Uncertainty in Deep Spatiotemporal Forecasting D Wu, L Gao, X Xiong, M Chinazzi, A Vespignani, YA Ma, R Yu 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 1841–1851, 2021 | 56 | 2021 |
On Approximate Thompson Sampling with Langevin Algorithms E Mazumdar, A Pacchiano, YA Ma, M Jordan, P Bartlett International Conference on Machine Learning, 6797-6807, 2020 | 46* | 2020 |
Exploring a noisy van der Pol type oscillator with a stochastic approach R Yuan, X Wang, Y Ma, B Yuan, P Ao Physical Review E 87 (6), 062109, 2013 | 46 | 2013 |
Irreversible samplers from jump and continuous Markov processes YA Ma, EB Fox, T Chen, L Wu Statistics and Computing 29 (1), 177-202, 2019 | 40* | 2019 |
Dynamical behaviors determined by the Lyapunov function in competitive Lotka-Volterra systems Y Tang, R Yuan, Y Ma Physical Review E 87 (1), 012708, 2013 | 40 | 2013 |
Lyapunov function as potential function: A dynamical equivalence RS Yuan, YA Ma, B Yuan, P Ao Chinese Physics B 23 (1), 010505, 2013 | 36 | 2013 |
Potential function in dynamical systems and the relation with Lyapunov function R Yuan, Y Ma, B Yuan, P Ao Proceedings of the 30th Chinese Control Conference, 6573-6580, 2011 | 34* | 2011 |
Variational refinement for importance sampling using the forward kullback-leibler divergence G Jerfel, S Wang, C Wong-Fannjiang, KA Heller, Y Ma, MI Jordan Uncertainty in Artificial Intelligence, 1819-1829, 2021 | 32 | 2021 |
Stochastic gradient MCMC methods for hidden Markov models YA Ma, NJ Foti, EB Fox Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017 | 30 | 2017 |