Supervised contrastive learning P Khosla, P Teterwak, C Wang, A Sarna, Y Tian, P Isola, A Maschinot, ... NeurIPS 2020, 2020 | 4306 | 2020 |
Contrastive multiview coding Y Tian, D Krishnan, P Isola arXiv preprint arXiv:1906.05849, 2019 | 2474 | 2019 |
Representation Learning on Graphs with Jumping Knowledge Networks K Xu, C Li, Y Tian, T Sonobe, K Kawarabayashi, S Jegelka International Conference on Machine Learning (ICML), 2018 | 2123 | 2018 |
What makes for good views for contrastive learning Y Tian, C Sun, B Poole, D Krishnan, C Schmid, P Isola NeurIPS 2020, 2020 | 1262 | 2020 |
Contrastive representation distillation Y Tian, D Krishnan, P Isola International Conference on Learning Representations (ICLR), 2020 | 1126 | 2020 |
Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need? Y Tian, Y Wang, D Krishnan, JB Tenenbaum, P Isola European Conference on Computer Vision (ECCV 2020), 2020 | 956 | 2020 |
Through-wall human pose estimation using radio signals M Zhao, T Li, M Abu Alsheikh, Y Tian, H Zhao, A Torralba, D Katabi Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 627 | 2018 |
Deep Learning Strong Parts for Pedestrian Detection Y Tian, P Luo, X Wang, X Tang Computer Vision (ICCV), 2015 IEEE International Conference on, 1904-1912, 2015 | 616 | 2015 |
Deepid-net: Deformable deep convolutional neural networks for object detection W Ouyang, X Wang, X Zeng, S Qiu, P Luo, Y Tian, H Li, S Yang, Z Wang, ... Proceedings of the IEEE conference on computer vision and pattern …, 2015 | 581 | 2015 |
Pedestrian detection aided by deep learning semantic tasks Y Tian, P Luo, X Wang, X Tang Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on, 2015 | 518 | 2015 |
RF-based 3D skeletons M Zhao, Y Tian, H Zhao, MA Alsheikh, T Li, R Hristov, Z Kabelac, D Katabi, ... ACM SIGCOMM 2018, 267-281, 2018 | 353 | 2018 |
Switchable deep network for pedestrian detection P Luo, Y Tian, X Wang, X Tang Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2014 | 310 | 2014 |
RF-based fall monitoring using convolutional neural networks Y Tian, GH Lee, H He, CY Hsu, D Katabi ACM UbiComp 2018 2 (3), 1-24, 2018 | 174 | 2018 |
Deepid-net: multi-stage and deformable deep convolutional neural networks for object detection W Ouyang, P Luo, X Zeng, S Qiu, Y Tian, H Li, S Yang, Z Wang, Y Xiong, ... arXiv preprint arXiv:1409.3505, 2014 | 174 | 2014 |
DeepID-Net: Object Detection with Deformable Part Based Convolutional Neural Networks W Ouyang, X Zeng, X Wang, S Qiu, P Luo, Y Tian, H Li, S Yang, Z Wang, ... IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (7), 1320-1334, 2017 | 161 | 2017 |
Learning to Infer and Execute 3D Shape Programs Y Tian, A Luo, X Sun, K Ellis, WT Freeman, JB Tenenbaum, J Wu International Conference on Learning Representations (ICLR), 2019 | 155 | 2019 |
Generative models as a data source for multiview representation learning A Jahanian, X Puig, Y Tian, P Isola arXiv preprint arXiv:2106.05258, 2021 | 105 | 2021 |
Divide and Contrast: Self-supervised Learning from Uncurated Data Y Tian, OJ Henaff, A Oord International Conference on Computer Vision (ICCV), 2021 | 86 | 2021 |
Improving clip training with language rewrites L Fan, D Krishnan, P Isola, D Katabi, Y Tian Advances in Neural Information Processing Systems 36, 2023 | 68 | 2023 |
Stablerep: Synthetic images from text-to-image models make strong visual representation learners Y Tian, L Fan, P Isola, H Chang, D Krishnan Advances in Neural Information Processing Systems 36, 2023 | 65 | 2023 |