A modified Hestenes–Stiefel conjugate gradient method with sufficient descent condition and conjugacy condition XL Dong, HW Liu, YB He, XM Yang Journal of Computational and Applied Mathematics 281, 239-249, 2015 | 38 | 2015 |
A self-adjusting conjugate gradient method with sufficient descent condition and conjugacy condition XL Dong, H Liu, Y He Journal of Optimization Theory and Applications 165, 225-241, 2015 | 38 | 2015 |
A new conjugate gradient method based on Quasi-Newton equation for unconstrained optimization X Li, J Shi, X Dong, J Yu Journal of Computational and Applied Mathematics 350, 372-379, 2019 | 35 | 2019 |
New version of the three-term conjugate gradient method based on spectral scaling conjugacy condition that generates descent search direction XL Dong, HW Liu, YB He Applied Mathematics and Computation 269, 606-617, 2015 | 24 | 2015 |
Some new three-term Hestenes–Stiefel conjugate gradient methods with affine combination XL Dong, DR Han, R Ghanbari, XL Li, ZF Dai Optimization 66 (5), 759-776, 2017 | 22 | 2017 |
Some nonlinear conjugate gradient methods with sufficient descent condition and global convergence XL Dong, H Liu, YL Xu, XM Yang Optimization Letters 9, 1421-1432, 2015 | 22 | 2015 |
An accelerated three-term conjugate gradient method with sufficient descent condition and conjugacy condition XL Dong, D Han, Z Dai, L Li, J Zhu Journal of Optimization Theory and Applications 179, 944-961, 2018 | 21 | 2018 |
A new adaptive Barzilai and Borwein method for unconstrained optimization H Liu, Z Liu, X Dong Optimization Letters 12, 845-873, 2018 | 19 | 2018 |
An efficient gradient method with approximate optimal stepsize for the strictly convex quadratic minimization problem Z Liu, H Liu, X Dong Optimization 67 (3), 427-440, 2018 | 18 | 2018 |
A new three–term conjugate gradient method with descent direction for unconstrained optimization XL Dong, HW Liu, YB He, S Babaie-Kafaki, R Ghanbari Mathematical Modelling and Analysis 21 (3), 399-411, 2016 | 9 | 2016 |
Polynomial convergence of Mehrotra-type prediction–corrector infeasible-IPM for symmetric optimization based on the commutative class directions X Yang, H Liu, X Dong Applied Mathematics and Computation 230, 616-628, 2014 | 9 | 2014 |
A modified nonlinear Polak–Ribière–Polyak conjugate gradient method with sufficient descent property X Dong Calcolo 57 (3), 30, 2020 | 7 | 2020 |
Further comment on another hybrid conjugate gradient algorithm for unconstrained optimization by Andrei X Zheng, X Dong, J Shi, W Yang Numerical Algorithms 84, 603-608, 2020 | 5 | 2020 |
Comment on “A new three-term conjugate gradient method for unconstrained problem” XL Dong Numerical Algorithms 72, 173-179, 2016 | 5 | 2016 |
A new CG algorithm based on a scaled memoryless BFGS update with adaptive search strategy, and its application to large-scale unconstrained optimization problems X Li, W Zhao, X Dong Journal of Computational and Applied Mathematics 398, 113670, 2021 | 3 | 2021 |
An efficient adaptive three-term extension of the Hestenes–Stiefel conjugate gradient method XL Dong, ZX Liu, HW Liu, XL Li Optimization Methods and Software 34 (3), 546-559, 2019 | 3 | 2019 |
A Modified Nonmonotone Hestenes–Stiefel Type Conjugate Gradient Methods for Large-Scale Unconstrained Problems XL Dong, HW Liu, XL Li, YB He, ZX Liu Numerical Functional Analysis and Optimization 38 (1), 39-50, 2017 | 3 | 2017 |
Some modified Yabe–Takano conjugate gradient methods with sufficient descent condition XL Dong, WJ Li, YB He RAIRO-Operations Research-Recherche Opérationnelle 51 (1), 67-77, 2017 | 3 | 2017 |
A globally convergent hybrid conjugate gradient method and its numerical behaviors YY Huang, SY Liu, XW Du, XL Dong Journal of Applied Mathematics 2013 (1), 147025, 2013 | 3 | 2013 |
An adaptive three-term conjugate gradient method with sufficient descent condition and conjugacy condition XL Dong, ZF Dai, R Ghanbari, XL Li Journal of the Operations Research Society of China 9, 411-425, 2021 | 1 | 2021 |