关注
Juno KIM
Juno KIM
在 g.ecc.u-tokyo.ac.jp 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Symmetric Mean-field Langevin Dynamics for Distributional Minimax Problems
J Kim, K Yamamoto, K Oko, Z Yang, T Suzuki
The Twelfth International Conference on Learning Representations, 2024
92024
Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape
J Kim, T Suzuki
International Conference on Machine Learning, 2024
82024
Reeb flows without simple global surfaces of section
J Kim, Y Kim, O van Koert
Involve, a Journal of Mathematics 15 (5), 813-842, 2023
32023
Transformers are Minimax Optimal Nonparametric In-Context Learners
J Kim, T Nakamaki, T Suzuki
arXiv preprint arXiv:2408.12186, 2024
12024
Hessian Based Smoothing Splines for Manifold Learning
J Kim
arXiv preprint arXiv:2302.05025, 2023
12023
-Variational Autoencoder: Learning Heavy-tailed Data with Student's t and Power Divergence
J Kim, J Kwon, M Cho, H Lee, JH Won
The Twelfth International Conference on Learning Representations, 2024
2024
A Central Limit Theorem for Rosen Continued Fractions
J Kim, K Choi
arXiv preprint arXiv:2009.02047, 2020
2020
系统目前无法执行此操作,请稍后再试。
文章 1–7