Improving genetic programming based symbolic regression using deterministic machine learning I Icke, JC Bongard 2013 IEEE Congress on Evolutionary Computation, 1763-1770, 2013 | 93 | 2013 |
Mapping adolescent reward anticipation, receipt, and prediction error during the monetary incentive delay task Z Cao, M Bennett, C Orr, I Icke, T Banaschewski, GJ Barker, ALW Bokde, ... Human brain mapping 40 (1), 262-283, 2019 | 92 | 2019 |
Re-engineering the GIS&T Body of Knowledge SC Ahearn, I Icke, R Datta, MN DeMers, B Plewe, A Skupin International Journal of Geographical Information Science 27 (11), 2227-2245, 2013 | 39 | 2013 |
JUMP Cell Painting dataset: morphological impact of 136,000 chemical and genetic perturbations SN Chandrasekaran, J Ackerman, E Alix, DM Ando, J Arevalo, M Bennion, ... BioRxiv, 2023.03. 23.534023, 2023 | 38 | 2023 |
A multi-level convolutional LSTM model for the segmentation of left ventricle myocardium in infarcted porcine cine MR images D Zhang, I Icke, B Dogdas, S Parimal, S Sampath, J Forbes, A Bagchi, ... 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018 …, 2018 | 35 | 2018 |
Ventral striatum connectivity during reward anticipation in adolescent smokers L Jollans, C Zhipeng, I Icke, C Greene, C Kelly, T Banaschewski, ... Developmental neuropsychology 41 (1-2), 6-21, 2016 | 22 | 2016 |
Multi-objective genetic programming for visual analytics I Icke, A Rosenberg European Conference on Genetic Programming, 322-334, 2011 | 16 | 2011 |
Visual analytics: A multifaceted overview I Icke, E Sklar https://academicworks.cuny.edu/gc_cs_tr/326/, 1-23, 2009 | 16 | 2009 |
Transfer learning for the fully automatic segmentation of left ventricle myocardium in porcine cardiac cine MR images A Chen, T Zhou, I Icke, S Parimal, B Dogdas, J Forbes, S Sampath, ... Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS …, 2018 | 15 | 2018 |
Automatic segmentation of left ventricle in cardiac cine MRI images based on deep learning T Zhou, I Icke, B Dogdas, S Parimal, S Sampath, J Forbes, A Bagchi, ... Medical Imaging 2017: Image Processing 10133, 540-547, 2017 | 15 | 2017 |
Automated measures for interpretable dimensionality reduction for visual classification: A user study I Icke, A Rosenberg 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), 281-282, 2011 | 13 | 2011 |
Content based 3d shape retrieval, a survey of state of the art I Icke Computer science phd program 2nd exam part 1, 2004 | 13 | 2004 |
Knowledge reference system and method A Skupin, BS Plewe, S Ahearn, I Icke US Patent 11,436,270, 2022 | 10 | 2022 |
A deterministic and symbolic regression hybrid applied to resting-state fmri data I Icke, NA Allgaier, CM Danforth, RA Whelan, HP Garavan, JC Bongard Genetic Programming Theory and Practice XI, 155-173, 2014 | 9 | 2014 |
Integrating inflammatory biomarker analysis and artificial-intelligence-enabled image-based profiling to identify drug targets for intestinal fibrosis S Yu, AA Kalinin, MD Paraskevopoulou, M Maruggi, J Cheng, J Tang, ... Cell Chemical Biology 30 (9), 1169-1182. e8, 2023 | 6 | 2023 |
Segmentation of left ventricle myocardium in porcine cardiac cine MR images using a hybrid of fully convolutional neural networks and convolutional LSTM D Zhang, I Icke, B Dogdas, S Parimal, S Sampath, J Forbes, A Bagchi, ... Medical Imaging 2018: Image Processing 10574, 52-58, 2018 | 6 | 2018 |
A visualization tool for student assessments data I Icke, E Sklar From Theory to Practice: Design, Vision and Visualization Workshop, 2008 | 6 | 2008 |
Multi-level convolutional LSTM model for the segmentation of MR images A Chen, D Zhang, I Icke, B Dogdas, S Parimal US Patent 11,030,750, 2021 | 5 | 2021 |
Visual and semantic interpretability of projections of high dimensional data for classification tasks I Icke, A Rosenberg arXiv preprint arXiv:1205.4776, 2012 | 3 | 2012 |
Dimensionality reduction using symbolic regression I Icke, A Rosenberg Proceedings of the 12th annual conference companion on Genetic and …, 2010 | 3 | 2010 |