A deep learning framework for neuroscience BA Richards, TP Lillicrap, P Beaudoin, Y Bengio, R Bogacz, ... Nature neuroscience 22 (11), 1761-1770, 2019 | 833 | 2019 |
Learning real-world stimuli in a neural network with spike-driven synaptic dynamics JM Brader, W Senn, S Fusi Neural computation 19 (11), 2881-2912, 2007 | 423 | 2007 |
Dendritic encoding of sensory stimuli controlled by deep cortical interneurons M Murayama, E Pérez-Garci, T Nevian, T Bock, W Senn, ME Larkum Nature 457 (7233), 1137-1141, 2009 | 408 | 2009 |
Top-down dendritic input increases the gain of layer 5 pyramidal neurons ME Larkum, W Senn, HR Lüscher Cerebral cortex 14 (10), 1059-1070, 2004 | 353 | 2004 |
Dendritic cortical microcircuits approximate the backpropagation algorithm J Sacramento, R Ponte Costa, Y Bengio, W Senn Advances in neural information processing systems 31, 2018 | 333 | 2018 |
Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo–like input currents A Rauch, G La Camera, HR Luscher, W Senn, S Fusi Journal of neurophysiology 90 (3), 1598-1612, 2003 | 323 | 2003 |
Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity IR Fiete, W Senn, CZH Wang, RHR Hahnloser Neuron 65 (4), 563-576, 2010 | 301 | 2010 |
An algorithm for modifying neurotransmitter release probability based on pre-and postsynaptic spike timing W Senn, H Markram, M Tsodyks Neural computation 13 (1), 35-67, 2001 | 285 | 2001 |
A synaptic explanation of suppression in visual cortex M Carandini, DJ Heeger, W Senn Journal of Neuroscience 22 (22), 10053-10065, 2002 | 277 | 2002 |
Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network J Tabak, W Senn, MJ O'Donovan, J Rinzel Journal of Neuroscience 20 (8), 3041-3056, 2000 | 225 | 2000 |
A cospectral correction model for measurement of turbulent NO2 flux W Eugster, W Senn Boundary-Layer Meteorology 74 (4), 321-340, 1995 | 220 | 1995 |
Learning by the dendritic prediction of somatic spiking R Urbanczik, W Senn Neuron 81 (3), 521-528, 2014 | 217 | 2014 |
Climbing neuronal activity as an event-based cortical representation of time J Reutimann, V Yakovlev, S Fusi, W Senn Journal of Neuroscience 24 (13), 3295-3303, 2004 | 192 | 2004 |
Repetitive TMS over the human oculomotor cortex: comparison of 1-Hz and theta burst stimulation T Nyffeler, P Wurtz, HR Lüscher, CW Hess, W Senn, T Pflugshaupt, ... Neuroscience letters 409 (1), 57-60, 2006 | 186 | 2006 |
Extending lifetime of plastic changes in the human brain T Nyffeler, P Wurtz, HR Lüscher, CW Hess, W Senn, T Pflugshaupt, ... European Journal of Neuroscience 24 (10), 2961-2966, 2006 | 155 | 2006 |
Nerve injury-induced neuropathic pain causes disinhibition of the anterior cingulate cortex SM Blom, JP Pfister, M Santello, W Senn, T Nevian Journal of Neuroscience 34 (17), 5754-5764, 2014 | 152 | 2014 |
Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons G La Camera, A Rauch, D Thurbon, HR Luscher, W Senn, S Fusi Journal of neurophysiology 96 (6), 3448-3464, 2006 | 150 | 2006 |
Spike-based reinforcement learning in continuous state and action space: when policy gradient methods fail E Vasilaki, N Frémaux, R Urbanczik, W Senn, W Gerstner PLoS computational biology 5 (12), e1000586, 2009 | 146 | 2009 |
Matching recall and storage in sequence learning with spiking neural networks J Brea, W Senn, JP Pfister Journal of neuroscience 33 (23), 9565-9575, 2013 | 132 | 2013 |
Reinforcement learning in populations of spiking neurons R Urbanczik, W Senn Nature neuroscience 12 (3), 250-252, 2009 | 126 | 2009 |